PALS: Peer-to-Peer Adaptive Layered Streaming

Reza Rejaie
Department of Computer Science
University of Oregon
reza@cs.uoregon.edu

ABSTRACT

This paper presents a new framework for Peer-to-Peer Adapti
Layered Streaming, called PALS. PALS is a receiver-driven a
proach for quality adaptive playback of layer encoded stiag
media from a group of congestion controlled sender peersio-a
gle receiver peer. Since the effective throughput from esctder
is variable and not known a priori, it is challenging to cdoede
delivery among active senders. In PALS, the receiver otchtes
coordinated delivery among active senders by adaptivebriohn-
ing: 1) a subset of senders that maximize overall throughput
overall quality (i.e. number of layers) that can be delidefiom
these senders as well as distribution of overall througlpubng
active layers, and most importantly 3) required packetsetalé-
livered by each active sender in order to effectively copin\any
sudden change in throughput from individual senders. Werites
PALS framework, identify key components of the frameworkl an
their interesting design challenges, present sampleisoltdr the
key components, and present our preliminary results.

Categories and Subject Descriptors
C.2 [Computer-Communications Networks]: Distributed t8yss-
Distributed Applications

General Terms
Design, Performance, Measurement.

Keywords
Peer-to-peer networks, Congestion control, Quality Aidefsttream-
ing, Layered encoding.

1. INTRODUCTION

Peer-to-peer (P2P) networks are becoming increasingly-pop
lar as an alternative communication paradigm to traditichant-
server architecture. Most of the research on P2P networké$oha
cused on two questions: “how to form a network of cooperative

Antonio Ortega
Integrated Media Systems Center
University of Southern California

ortega@sipi.usc.edu

content in a P2P network has received little attention, bseat
simply requires a file transfer between two (or more) peesy-H
everstreaming realtime multimedia (audio, video) contentin P2P
networks is a challenging problem because a single peer wiay n
be willing or able to commit sufficient resourcdse(, bandwidth

or CPU) to stream a media file to another peer. Therefore, it is
more likely that several peers collectively stream reqeebsbntent

to another peer. This approach should result in a better hakd
ancing among sender peers and less congestion acrosswhelaet
Furthermore, assuming receiver’s access link is not thiteinetck,

a group of sender peers is more likely to provide a higherallver
throughput to the receiver peer and thus deliver a highelitgua
stream.

To enable streaming of content from multiple peers sevérallc
lenging issues should be addressed: First, there shouldrieel-
anism to identify a subset of available peers with the ddsimn-
tent, that can provide maximum overall throughput to theires
peer. Note that the overall throughput of a group of senderspe
may not increase when additional senders are added, betalise
tiple senders may reside behind the same bottleneck. Seeacil
sender peer should perform TCP-friendly congestion co(@6)
such as RAP [3] or TFRC [4]. This implies that the throughput
available from each sender is not known a priori and could sig
nificantly change during a session. Furthermore, becauskeof
Internet heterogeneity, characteristiesg bandwidth and RTT)
of connections from different senders could be signifigadiffer-
ent. Therefore, any delivery mechanism designed to opé&ate
multiple senders should be quality adaptive, i.e., it stidad able
to adjust smoothly the quality (and thus the bandwidth) efdke-
livered stream, as the overall throughput changes. Thiwnga
subset of sender peers, the main problerhaw to coordinate a
group of active senders so that they can cooperate in strggmi
the maximum deliverable quality that can be supported with t
given overall throughput?For example, when three peers are co-
operatively streaming a video they need to coordinate wheasr
would be responsible for in time delivery of each segmentef t

peers?” and “how to locate a piece of content among in such a video. Fourth, since each sender peer can potentially le¢arag

network?” €.g, [1],[2]). Since most applications in P2P networks
exchange files among peeesd, Napster), the actual delivery of

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

NOSSDAV’03June 1-3, 2003, Monterey, California, USA.

Copyright 2003 ACM 1-58113-694-3/03/0006$5.00.

a session, any delivery mechanism should be able to copethvth
dynamics of peer participation and minimize any negativpaat
of such dynamics on delivered quality.

In this paper, we present a new framework for streaming in P2P
networks that is calle@2P Adaptive Layered Streamiiog PALS
PALS is a receiver-driven approach that allows a receivert¢bes-
trate the adaptive delivery of stored layer encoded strefaons
multiple sender peers to a single receiver. Given a set alesen
peers, PALS progressively evaluates various combinatibssnders
to determine a subset of the senders that can collectivelyige
maximum throughput. Once such a subset of senders is slecte

the receiver monitors the overall throughput and peridbjiate-
termines what is the target overall quality (i.e., the touaiber of
coding layers) that can be delivered from all senders. Ttien,
receiver determines a proper distribution of the overabdighput
among active layers.€., what portion of the overall throughput
should be allocated for delivery of each layer), and finallyds
allocated bandwidth to each layer among active sendersxhich
segments of each layer should be delivered by each sender) in
der to effectively cope with any sudden change in throughgbut
individual senders.

PALS is built on our previous work on the design of a quality
adaptation (QA) mechanism for congestion controlled pdajtof
layer encoded video over the Internet [5]. While the goalAiL®
is in essence similar to our previous work, there are a fewdiey

and server selection mechanisms. Nguyen et al. [8] predente
mechanism for delivery of streaming media from multiple narir
servers to a single client. They assumed that different fldas
not share any bottleneck and overall bandwidth from all esesris
always higher than stream bandwidth. In their proposedtisolu
the receiver periodically reports throughput and delayllafenders
back to them using control packets. Then, senders run éxitgd
algorithm to determine which one should send each packee Th
main difference between their approach and PALS is that PALS
is receiver-driven and adapts the quality of deliveredastravith
variations of overall throughput.

There has been some related work on streaming in P2P networks
CoopNet[6] is a mechanism for distributing MD encoded strea
among peers in both live and on-demand sessions that is@ble t

ferences between PALS and the unicast QA mechanism: 1) PALS cope with flash-crowd. CoopNet leverages MD encoding to send

performs QA across multiple independent connections, with
tentially different characteristics, rather than a singd@nection,
2) PALS is receiver-driven rather than sender driven. A ix@re
driven approach to QA should address two new problems:, st
receiver may not have any information about patterns of gham
overall throughput. Second, the receiver should effelgtivenitor
and manage the delivery of segments from multiple senddrishw
requires several other mechanisms besides the receiverndpA.
These differences introduce a new set of challenges thabdexa
ist in a unicast QA mechanismThe main contribution of PALS
is a receiver-driven coordination and adaptation framelvdor
streaming from multiple, congestion-controlled, sendeerg that
is able to cope with unpredictable variations in throughgam
each sender peer, as well as with dynamics of peer participat
Although we motivated the PALS framework for streaming ilPP2
networks, one can use PALS framework for streaming multiened
content from a potentially distributed group of multimedervers
across a best-effort network to a single client.

Our main goals in this paper are: 1) to describe the framework
and its key components, i.e., the required mechanisms fandeo
nation among senders and adaptation of delivered qualitlyto
namics of both network connection and peer participationio2
provide sample mechanisms for the key components, 3) tasisc
interesting challenges that arise in the design of such arésims
and present our preliminary results. In this paper, howaverdo
not discuss how an initial set of sender peers is identifiedis T
issue appears to be similar for both realtime and non-realtion-
tent and can be achieved in different ways, such as by camgact
a server €.g, [6]) or using a hash functiore(g, [1]). A detailed
analysis of the various design issues, including the aisadfsnore
general mechanisms to address the key challenges, and &riore
tensive evaluation of PALS remain as future work.

The rest of this paper is organized as follows: In Section&, w
present related work. We justify our two key design choiges i
Section 3. Section 4 describes the PALS framework, its kegy-co
ponents and sample solutions for each component. We present
preliminary result in Section 5. Finally, Section 6 con@adhe
paper and presents our future plans.

2. RELATED WORK

The basic idea of streaming from multiple servers to a single
client is not new. Apostolopoulos et al. [7] proposed a mecha
nism for streaming from multiple servers using multipleaéstion
(MD) encoding. They presented a distortion model for MD ehco
ing and used this model to study the effect of server and obnte
placement on delivered quality of both MD and single desionip
(SD) encodings. They did not consider variations of thrgugh
from each sender to the receiver and focused on contentpéate

different description to separate tree of interested peEos on-
demand sessions, a new client contacts a single senderpeea f
set of candidate peers, and this peer is asked to deliveotitert.
If that sender peer is unavailable or unwilling to serve, ¢hent
contacts another peer until a sender peer is found. Theseaeeal
systems such as Abacast[9], Chaincast [10], Allcast [1TtaNs
[12] that form a distribution tree from the participatingetits sim-
ilar to CoopNet. However, there is not sufficient informatatbout
these systems for comparison. Tran et al. [13] presentedha te
nigque called ZIGZAG, for building and maintaining an efficie
single-source media distribution tree. A key distinctiéoor work
is that we present a quality adaptive delivery mechanism froul-
tiple congestion controlled senders.

Finally, both PALS and RLM [14] are receiver-driven mecha-
nisms that leverage layered encoding, however there axe fufe
damental differences between them. In RLM, the receiverachn
just number of delivered layers by joining a different numbgé
multicast sessions. This allows the receiver to regulagzadlvin-
coming throughput (and thus overall delivered quality)at level
that does not cause congestion in the netwioek,the receiver im-
plements some type of congestion control mechanism bya#ggl
incoming throughput. In the PALS framework, all flows are-uni
cast, and a unicast congestion control mechanism is implede
at each sender. Therefore, the overall incoming throughpthe
receiver is the aggregate congestion controlled bandvidth all
senders. The receiver does not control overall incominguidin-
put, instead it controls the quality of the stream that imgealeliv-
ered through the incoming throughput from multiple senders

3. JUSTIFYING DESIGN CHOICES

Before describing details of PALS, we need to justify our two
key design choices, 1) adopting a receiver-driven adayptatnd
coordination, and 2) using layered (or hierarchical) eimogpd

First, the coordination and adaptation machinery for coaipe
playback from multiple senders can be implemented at avexcei
at the senders. We believe that the receiver-driven apprisate
natural solution since the receiver is the opty'manent member
of the many-to-one session that has complete knowledget 4hou
which packets have been successfully delivered, 2) thecusub-
set of active sender peers, and 3) the available throughputdach
sender peer. This puts the receiver in a unique positiondoesr
trate delivery from the senders. While the receiver cannedipt
the future available throughput for each sender, it shoalétde to
leverage a degree of multiplexing among senders to its aagan
Another advantage of the receiver-driven approach is thdoés
not require a significant processing overhead at the sensiace
coordination and adaptation is primarily done by the rezeiv

The receiver-driven approach introduces a network overfaa

coordination messages that should be periodically semt fre re- SPAL: PALS Sender RPAL

ceiver to all active senders. However, this overhead shooldbe ~ BPAL: PALS Receiver
higher than associated overhead for any conceivable seinigen SPAL I
coordination approach that uses unicast messdgifige receiver-
driven approach may require the availability of some dethiheta- r ‘ g
data about each requested streang,(variations of stream band- Internet e
width for VBR streams). This information could be provideg b SPA 8
either a central server or by the sender peers, and can beaised 0
perform encoding-specific packet schedulimgg([15, 16, 17]). ,]
Obtaining this information before content delivery stdetads to
a small overhead with respect to sender-driven approabésye L
believe that the benefits of using a receiver-driven appraacd- [SPAL
weigh this drawback.

Second, a layered organization of data streams presents-a us Figure 1: End-to-end Architecture in PALS

ful structure for cooperative playback from multiple sersdBoth
layer encoding and Multiple Description encoding providetsor-
ganization. We selected layered encoding since it ofteieaeb a
higher compression efficiency than MD. Layer encodings @ss |
resilient to losses in lower layers (specially in the baserdpin
comparing to MD. However, as we describe in the following-sec

tion, in PALS lost packets can be retransmitted within a winaf 4.2 An Overview of PALS Framework
time. Note that PALS can accommodate both types of data+epre The primary goal of PALS is to stream the maximum quality

sentations. For example, in a purely layered representafispe- that can be delivered by a set of available sender peers to-a si

ﬁclf: dzﬁi((:)kr?aillsropbrjssten r:;slg ia;,”c’iseest:/rzrcf %Lgv:/se\?grly iiev(\q/gﬁlsdtet?; fsoﬂr;jeé gle receiver peer. The key challenge is that the availaltith-
' ' put from each sender is not known a priori, and can signifigant

to request the same packet from more than one server. Tdlig t change during a session. This implies that PALS should be abl

ggs&gﬁcaﬁ;rz fﬁiﬁézgszrr 'é; r:g;jgtet\t;(;?ggﬁzr;tﬁ (m:: to gracefully cope with any sudden decrease in throughpuiewh
tical) vérsions of a stream from different servers effectively leveraging sudden increases in overall thhpug. The
) basic idea of PALS is simple and intuitive. The receiver qdiri
cally sends amrdered list of packets to each sender. Each sender
4. P2P ADAPTIVE LAYERED STREAMING simply transmits the requested packets in the given ordbeaste
(PALS) that is determined by its CC mechanism. Using ordered lisis p
vides several benefits: 1) it allows the receiver to bettertrcd
delivered packets from each sender, 2) it ensures gracefubd
dation in quality when throughput of a sender suddenly d=ge
by ordering the list based on importance of packets, and &)-it
ables different receivers to implement different qualithaptation
algorithms for delivery of the same stream. The requestgedch
sender can be piggy-backed with the CC feedbacks that amlper
i ically sent to that sender or can be sent separately.
4.1 Target Environment The machinery of PALS protocol is mostly implemented at the
receiver. The receiver keeps track of the Exponentiallygivieid
Moving Average (EWMA) of overall throughputl{.,,ma.). At a
given point in time, the receiver assumes that the currdoevaf

any other mechanism that is used to locate sender peeragdhe
initial setup phase. Table 1 summarizes our notation throug
this paper.

In this section, we describe the PALS framework in more dletai
After presenting our target environment and assumptiorsuby
section 4.1, we provide an overview of the PALS framework and
identify three key components in subsection 4.2. Thengdeis-
sues for these key components along with their sample sokiti
are discussed in subsections 4.3, 4.4 and 4.5.

Figure 1 shows our target environment, where several sender
peers (SPAL) across the Internet cooperatively playbaekagsted
stream to a receiver peer (RPAL). Each peer is expected torper

TCP-friendly congestion control. Therefore, throughpot each T.wma Will remain unchanged for a periatl and estimates the to-

sender peer can co-exist_ i_n a fgir way with other outgoinfi¢ra tal number of incoming packets<() during this period as follows:
from that senderd.g, proyldlng different contents for other peers). - Tlgig%ai:?_ The Quality Adaptation (QA) mechanism at the
Sender peers are potentially scattered across the Inténeetfore

! IR X receiver distributes thed& packets amongctive layersbased on
connection to one sender peer could exhibit significantfgdint the overall throughput and receiver's buffer state fo, buf, ..,
characteristicsife., bandwidth and RTT) from connections to other bufx). For example, if the receiver expects to receive 50 pack-
senders. PALS should be able to work with any arbitrary set of & during a periodK = 50) and four layers are currently being
sender peers across the network as long as the overall tipotig laved. the OA mechanism may allocdte = 20. k1 = 15. ko =
of all senders is higher than the bandwidth of a single layer. payes, Q y die - 22

. h . 10, ks = 5 packets to layeL, .. L3, respectively. By controlling
We currently assume that a requested stream is entirelabi&i 0 gistripytion of incoming packets among layers, the iveces-
at each sender peer. For clarity of the discussion, we aBmas

S sentially allocates the distribution of overall throughpmong ac-
that all layers have the same constant-bit-rage, (C'). However,

; ;) . ’ tive layers pwo, bw1, .. bwn) during one period, which in turn
neither of these assumptions is required for PALS. Genafat-i determines evolution of receiver's buffer state. Given diri-
mation about a requested streagg(number of layers, layer band-

) cuRe e 3 : bution of total packets among layers for a given peribg €1, .
width d'?”'b”“?'?as”?am length) can be prowdeq to theeneer k»), the Packet Assignment (PA) mechanism at the receiver maps
along with the initial list of sender peers by the originaivees (or

a subset of these packets (possibly from different layergach
'Multicast messaging may reduce coordination overhead in a sender and sends a request that contains a list of assigoketpa

sender-driven approach but in our judgment other benefiteof ~ t0 each sender. This packet assignment strategy allowsteeser
receiver-driven approach still outweighs this potentihdfit. to loosely control allocation of each sender’s throughpubag

Sj Senderj

L; Layer:

n No. of Active layers

N Max. number of layers
Tewma EWMA overall Throughput
T wma EWMA Throughput froms;
bu f; Buffered data for;

bw; Allocated BW forL;
BUFYi] Target buffer forL;
PktSize Packet Size

SRTT; EWMA RTT from s;
SRTTmae | Max. value among RT'T)
A interval between requests
K Estimated no. of incoming Packets durig

Table 1: Summary of Notation

active layers. The number of assigned packets to each sender
proportional to the expected contribution of that sendéreugh-
put to the overall throughput. For example, if sendeprovides
50% of overall throughput, half of the overall packets dgrone
interval are assigned tg.

Once the receiver initiates playback, there needs to be hanec
nism at the receiver to keep senders loosely synchronizedtiae
receiver. More specifically, playout time of the requestadkets
should be determined with respect to actual playout timaebin-
going session at the receiver in order to ensure “in-timat/egy
of requested packets. PALS employs two complementary mech-
anisms to achieve this goal. First, PALS uses a Sliding Windo
(SW) approach that is shown in Figure 2. For each interva, th
receiver only considers packets with playout time highanth,;,,
wheret,., =t, + 7. The window should slide forward as playout
time proceeds so that it always remains sufficiently aheathef
playout time. Furthermore, the SW mechanism should enbate t
each sender always has outstanding packets to deliverwisiee
the sender may become idle and its throughput may drop béfow i
congestion controlled limit, which would not be desiratBecond,
any new list of requested packets from the recestrwrites
any outstanding list that is being delivered by a senider,when
a sender receives a new list of requested packets from tb&veec
it starts delivery of packets from the new list and abandams a
pending packet from the previous list. This overwriting fmegism
keeps slow senders loosely synchronized with receivees/quit.
Finally, the receiver requires a Peer Selection (PS) measimaim
order to periodically examine other available peers andthdoh
to the subset of active sender peers if their participatiadelivery
increases overall throughput of the session.

In summary, a PALS receiver requires the following four key
components: Quality Adaptation, Packet Assignment, Sgvin-
dow, and Peer Section. We discuss the design issues for radf o
these components and present some sample mechanism irt+the fo
lowing subsections, but we primarily focus on the first theeen-
ponents.

4.3 Quality Adaptation

The main goal of a QA mechanism is to maximize overall de-
livered quality while minimizing variations in playback ajity de-
spite unpredictable changes in available bandwidth. Tlyedke
sign issue is to manage the receiver’s buffer state in omlefféec-
tively absorb short-term mismatch between stream’s coptom
rate »+ C) and available network bandwidth. The receiver’s buffer
state can be controlled by proper allocation of availablediaadth

among active layers. In our earlier work [5], we designedralse
based QA mechanism for client-server streaming where teaver
reports its buffer state to the sender, and the sender teguraer-
layer bandwidth allocation on a per-packet basis to keegivecs
buffer state close to the optimal state. The optimal buffetesde-
pends on the pattern of variations in bandwidttg(Additive In-
crease/Multiplicative Increase) which is known to the sgndVe
follow the same design philosophy to design QA mechanism for
PALS. However there are several important differences betw
QA in PALS and in unicast streaming, which require a new ap-
proach to QA for PALS. First, the QA mechanism is implemented
at the receiver, this adds a delay to the control loop becthese
QA mechanism at the receiver should determine and contiex-in
layer bandwidth allocation for each sender’s throughpucofd,
the receiver should deal with multiple independent sendeétis
potentially different variations in bandwidth. Furthemapthe re-
ceiver does not have any knowledge about pattern of chamges i
overall throughput which could be used to derive optimalfduf
distribution. Third, performing a receiver-based QA metbm

on a per-packet basig€., sending a new request for each packet)
would be really expensive, therefore the QA mechanism shioel
invoked periodically. In the remaining of this subsectime, sketch

a receiver-driven QA mechanism for PALS.

The QA mechanism has two degrees of control, 1) it can effec-
tively control distribution of total buffered data amondiee lay-
ers pu fo, buf1, ..,buf,) by proper allocation of overall throughput
among active layers.€., by controlling pwo, bw1, ... ,bw,] where
Yoo bwi = Tewma); 2) it can change the number of playing layers
by adding/dropping the top layer.€., adjusting quality and thus
bandwidth of delivered stream). Short-term changes inuiine
put are absorbed by buffered data whereas long-term changes
throughput trigger adjustment in stream’s quality. Wheeral
throughput is higher than stream bandwidif {.. >= n * C),
receiver can utilize the excess bandwidth to fill its bufféié&e call
this filling phase. Once receiver’s buffers are filled to thprapri-
ate level, the receiver can increase stream’s bandwidtidting
a new layer. In contrast, when overall throughput is lowemth
stream bandwidth..m. < n*C), the receiver can drain buffered
data to compensate the bandwidth deficit. If total bufferat dor
its distribution) is not sufficient to absorb the bandwidéficit dur-
ing a draining phase, the receiver can drop the top layer aaav
buffer underflow for buffered data for other layers.

The key observation is that not only the total amount of beffe
data but also its distribution across active layers is efuoi effec-
tively absorb variations in throughput. To illustrate tbisserva-
tion, assume a scenario where 4 layers are being playediing=lg
Note that buffered data for each layer can not be drainedrfésin

Time

min

Figure 2: Sliding window scheme for loose synchronizationfo
requested packets with playout time

its consumption rate({). This implies that buffered data for each
layer can at most compensate up@obps deficit in throughput.
Therefore, the bigger the deficit in throughput, the largertotal
required buffering, and the larger the number of bufferiagels
that should be drained simultaneously to compensate thetdsfi
throughput. More specifically, the minimum number of buifigr
layers (. r) can be determined as,, s = % Figure

3 illustrates this requirement for two different draininceearios
with different pattern of changes in overall throughputthélugh
both scenarios require roughly the same amount of totaébnfj,
scenario | requires buffered data with proper distribugonoss at
least 3 layers whereas deficit in throughput for scenariati e
absorbed by buffering only for one layer. This observatioggests
that even distribution of buffered data among active layesusd
be appropriate. However, we note that once a layer is dropped
the amount of buffered data for that layer can not be levetage
for absorbing future variations in throughput which in tueads
to lower buffering efficiency. Therefore, given an expededid-
width deficit in the future, the optimal buffer distributiesmthe one
that distributes buffered data among minimum number ofirequ
buffering layers in a skewed fashion by allocating the maxim
amount of data that can be drained from a buffer during a bh@gin
phase tdu fo, the next such a maximum ta. f1, and so on.

The optimal buffer distribution directly depends on thetgat of
variations in the overall throughput. As we mentioned earthis
is one of the challenges in the receiver-based QA since tever
does not have sufficient (if any) information about the pattef
changes in overall throughput. Therefore, we consideredilter-
native solutions to determine a proper buffer distributibnthe re-
ceiver should be able to use a measurement-based techaipre t
gressively derive the pattern of changes in overall thrpugfrom
the incoming stream and determine the new optimal bufferidis
tion accordingly, or 2) the receiver can use a pre-specifiedfiaed
buffer distribution. Currently, we use the second approaith a
linear buffer distribution for PALS and we call thtarget buffer
state i.e, BUF[i] = BUF[i — 1] + a * SRTT . Wherea is a
configuration parameter that determines the slope of limeagase
in buffering per layer. Given a target buffer state, theeaamount
of buffering for layer: whenn layers are active can be specified
asbuf; = BUF[n — ¢ — 1]. Although this approach is static and
not optimal, it can still be effective. Design of measuretdggsed
techniques for deriving pattern of changes in overall tgrqaut re-
mains as future work.

Given a target buffer distribution, every time the QA medban
is invoked, it goes through the following steps to keep thfebu
state as close as possible to the target buffer state. iFostmpares
overall throughput with stream’s bandwidth to determinecthier
itis in a filling or a draining phase, and then implements thee:
sponding mechanisms as follows:

T Scenario I Scenario IT
4 L\ A\ /
c \,___19_/
C

Figure 3: Impact of pattern of variations in throughput on
inter-layer buffer distribution

e Filling Phase: If it is in a filling phase withn layers, the
receiver tries to fill its buffers up to the target state with
layers. Towards this end, it starts from the base layer and se
guentially determines the number of packets that each layer
requires to reach its target buffer level at the end of this in
terval, until all packets are allocated or all layers hawaxhe
their target buffer levels. This algorithm is describedhie t
following pseudo code:

Filling Phase
[*fill all layers up to target state */
=0
WHILE (i<nAND K > 0) {
IF (BUF[n—i—1]>buf;)
bufdeficit = BUF[’IL — 17— 1] - bufz
ELSE
bufaeficit =0
Feons = it
CO7L5buka#S‘1ze
ki = Pkﬁi(is‘filzcét + Keons
K=K-k
i=i+1

kcons denotes the number of packets that are consumed by
a layer during one period, arid is the number of allocated
packets tal;. Once buffered data for afl layers reach their
target levels, if more packets are available, the QA mecha-
nism repeats the same algorithm to fill all active layers up
to their target level withs + 1) layers. This fills buffers of

all existing layers up to the point to add a new layer. Once
all layers are filled up to this level and more packets ark stil
available, a new layer can be added if available throughput
is higher than stream’s bandwidth with an additional layer
((n + 1) x*(C <= Tewma)-

Draining Phase If the receiver is in a draining phase, first

it determines how many active layers can be sustained dur-
ing one interval with the current buffer state. If total ambu

of buffered data or its distribution is not sufficient to com-
pensate the deficit in overall throughput, the QA mechanism
progressively drops the top layer until the buffer state for
the remaining layers is sufficient to compensate the deficit
in overall throughput. Then, the QA mechanism essentially
reverses its filling algorithm. More specifically, it trieg t
drain all layers towards the last target level starting fithim

top layer. If more data needs to be drained, the top layer is
dropped, and the receiver repeats the above steps toward the
previous target state with — 1 layers.

In summary, there are two key differences between the receiv
driven QA mechanism for PALS and the sender-based QA mecha-
nism for unicast streaming. The QA mechanism for PALS should
determine inter-layer bandwidth allocation for a periotimie rather
than on a per-packet basis. Moreover, this mechanism skouoié-
how determine a proper client buffer distribution withony&nowl-
edge about pattern of changes in overall throughput.

We expect that the effect of any change in the number of sender
peers (due to departing of an existing sender peer or aiul#itaif
a new sender peer) would be similar to a sudden decrease or in-
crease in throughput. Therefore, the QA mechanism readistto
events the same way.

4.4 Sliding Window

The sliding window (SW) mechanism has two goals: 1) it should
keep all senders loosely synchronized with the playout antée
receiver in order to prevent senders from sending packetsevh
playout time has already passed, and 2) it should ensureathat
senders always have packets to send so they do not become idle
PALS achieves the first goal by using a sliding window coupled
with the overwriting mechanism. As shown in Figure 2, the re-
ceiver maintains a window that is periodically slided forded ev-
ery A seconds in order to stayseconds ahead of the playout time.

If the receiver overestimates throughput from a senderwiine
dow slides forward afteA seconds and the receiver sends another
request to the sender. This timer-driven approach (alotty evier-
writing) prevents a sender from falling behind the ongoiegsson.

To achieve the second goal, the receiver keeps track of time nu
ber of delivered packets from each sender during each aiteliv
the number of pending packets at a sender goes below a thresh-
old (k:nresh), the receiver sends another request to the sender. This
mechanism reacts to a sudden increase in the throughpuéntias
and triggers transmission of another request before theesdre-
comes idle. We call this mechanidrReverse Flow ContrqlRFC)
because the receiver tries to ensure that the sender’sr ljuée
list of pending packets) does not underflow. One key paranirete
the RFC mechanism is its threshold.This threshold for eander
should be specified as a portion of SRTT for that sendéleHor ex-
ample, setting to 0.5 for a sender means that a new request should
be sent to a sender when it has less than half a SRTT worth kf pac
ets to deliver. The threshold can be translated into the maxi
number of remaining packets that can trigger RFC mechangsm a
follows:

= 6*.§;)RTT Whel’eipgi = I;kitsize

PYi ewma

kr'fc

Using a small threshold results in a late reaction to a sudiaen

mechanism once per window to determine required packets
from all senders based on the overall throughput, and sends
a new request to all senders simultaneously. In this approac
the QA mechanism does not require to factor in throughput
from individual senders.

Asynchronous Requestindhe receiver can send new re-
quests to different senders in an asynchronous fashion. A
new request is sent to each fast sender as soon as its RFC
mechanism is triggered whereas new request to other senders
are sent at the end of one interval after sliding the window.
This approach does not suffer from the overwriting effect.
However, in this approach the sliding mechanism is decou-
pled from the QA mechanism and thus complicates coupling
of the QA mechanism with outgoing requests. If the QA
mechanism is invoked only once per interval to determine all
packets for one interval based on the overall throughput, a
request might be sent to a sender up to one interval later than
the execution of the QA mechanism. Since network condi-
tions might significantly change during one interval, thgs a
proach could lead to a poor performanegy(frequent layer
add/drop) for the QA mechanism. Alternatively, the receive
can invoke the QA mechanism before sending a request to
each sender (or sending a batch of concurrent requests to a
subset of senders). In this case, the QA mechanism should
work in anincrementafashion - that means at each execution
time in needs to send a request to a sender, the QA mecha-
nism should not only consider the recently requested packet
from other senders but it should also factor in variations in
throughput for individual senders. This clearly adds to the
complexity of the QA mechanism because it needs to cope
with higher degree of network dynamics. We plan to explore
new techniques for incremental QA in our future work.

The basic configuration parameter for the SW mechanism is the

crease in a sender’s throughput which may cause a sender to bewindow size (\). Since the dynamics of variations in through-

come idle. In contrast, if is set to a large value, RFC always
sends a new request to a sender too early and frequently otesw

out from a sender depend on its SRTT, the length of each aiterv

previous list of the sender. We call this awerwriting effect The
larger the threshold for RFC, the larger the portion of esstihat
is being overwritten, and thus the larger the number of padket
are ignored during one interval. Note that underlivereckptecdue

to overwriting can be requested (from the same or other sghde

and be delivered during the following intervals.

A key design question i$ow to couple the QA mechanism with

the receiver's requests to different senders®’throughput of all
senders is overestimated or all senders finish close to thefeam
interval, the receiver can invoke the QA mechanism onceeatitiul
of each interval to determine required packets for the neetval
based on overall throughput, then send new request to alesen
simultaneously at the beginning of the new interval. Howeire
practice, it is very likely that throughput of one senderdrmly
increases during an interval, and the RFC mechanism tsger
receiver to send a new request to this fast sender. The kay iss

to determine when a new request should be sent to other (9lowe

senders. One could devise two different approaches to sslthis
issue as follows:

e Synchronized Requesting. new request can be sent to all
senders at the same time once per interval. This synchibnize
approach is simple because it tightly couples sliding wimdo
mechanism with QA mechanism. The window can be slided
forward afterA seconds or as soon as RFC mechanism is
triggered for the fastest sender. The receiver invokes the Q

should be a function of SRTT. In the synchronized requesiing
proach, since the same interval is used for all senders,st baise-
lected in order to accommodate all sendeksdirectly controls re-
sponsiveness of the QA mechanism as well as frequency (asd th
network overhead) of receiver’s requests to senders. Wssmgall
window allows the QA to quickly react to changes in throughpu
and maintain the buffer state closer to the target buffee stdow-
ever, if the window is too small, it could cause the QA mechani
to oscillate due to the delay in the control loop between ¢oeiver
and each sender. Obviously, if SRTT from different sendpas s
wide range, it would be difficult to set the window in order &tisfy
above considerations for all senders. In the asynchroremsest-
ing approach, however, the receiver can potentially usgarate
interval for each sender. This scheme allows the receiveortrol
each sender with a separate frequency. This in turn shiftglx-
ity to the design of QA mechanism for the asynchronous amgproa
as we mentioned earlier. In summary,should be chosen in or-
der to achieve a proper balance between responsivene e fort
mechanism, and network load for receiver’s requests. Irctie
rent version of PALS, we use a synchronized requesting agpro
and setA to 4 to 6 SRT Trmae WhereS RT T q. IS the maximum
SRTT among active senders at the beginning of each window.

4.5 Adaptive Packet Assignment

If the QA mechanism determines an ordered list of packetgto b
requested from multiple sendegsd, it is invoked once per RTT), a
packet assignment mechanism is needed to properly dittiibese

packets among active senders. We note that total requidaiza
for one window may include a different number of packets from
various layers. For example, the QA mechanism may require 10
8, 5 and 6 packets fako, L1, L2 and Ls, respectively. The num-
ber of assigned packets to each sender should be propadtidtsa
expected throughput during a window so that all sendersdotded
liver their assigned packets at relatively the same timeacfoeve
this, the receiver keeps track of short-term EWMA of perdaw
throughput for each active sendéri(,,,,) and uses this to deter-
mine the number of requested packets from each sender assoll

T’L

ewma*K

E where
eumna .
— n
Ez =0 Telwma andK = Zi:o E;

Then, the packet assignment mechanism should agsigpecific
packets from the total list of required packets to each sentide

it tries to satisfy the following goals: First, it tries tosagn all re-
quired packets of a layer to a single sender whenever pesdihis
strategy reduces the size of request messages, and thiresdgss
network bandwidth for sending request messages. Secondrea m
important consideration is to distribute packets amongieenin
order to minimize any negative impact on delivered qualifg tb

a sudden change in a sender’s throughput. We discuss two basi
examples to illustrate the impact of packet assignmertiegfies on
overall behavior of PALS framework.

Coping with Slow Sendersf the receiver overestimates through-
put of one or more senders, those senders can not delivereall t
assigned packets within the current window. The main goal of
the packet assignment mechanism is to ensure that the ldeaila
throughput is used to deliver the most important packetsceSihe
receiver does not know a priori which sender might be slow, as
signing all packets of a layer to a single sender does noeeehi
this goal. However, the following packet assignment sgyaigan
cope with slow senders: once the number of packets assigned t
each sendelk{) is determined based on its throughput, the ordered
list of packets is distributed among active senders imegghted
round-robinfashion. For example, if three sendets si1 ands:
contribute 50%, 30% and 20% the overall throughput, theredie
list of packets is divided among them in a round-robin fashio
that means we repeatedly assigrbase*0.5 packets tasg, next
rrbase*0.3 packets t1, and nextrrbase*0.2 packets te2. This
strategy attempts to proportionally distribute less ing@atr packets
(i.e., packets of higher layers with higher timestamp) at the énd o
all lists. These packets might have more opportunity to bie-de
ered during the following windows if excess throughput brees
available. rrbase is a configuration parameter for the packet as-
signment mechanism that controls size of a batch of pachats t
is being distributed among the senders in each round. Therlar
rrbase, the smaller the amount of control information, the smaller
the number of senders that deliver packets of a given lapdritze
more likely it is that the undelivered packets are the mongairtant
ones.

Limiting Overwriting Effect The overwriting effect could affect
slow senders when the synchronized requesting approacieds u

If we use the above round-robin packet assignment stratéidy w
the synchronized requesting approach, requested padkatsher
layers are frequently overwritten.d., ignored) which could lead

to starvation of higher layers. To limit the negative impatthe
overwriting effect, the above packet assignment stratagybe ex-
tended as follows: a window can be partitioned to two smalier
dows with the length equal téj—1 and% portions of the original
window, then we can sequentially apply the weighted rowoidrr
packet assignment strategy on the smaller windows with the o

ki

ew’rna

| (1-r)m | rrA |

| | |

| |
L3 1

| |
Lo |

i

‘ === <
Lo

Figure 4. An example of window partitioning for packet assign-
ment

der shown in Figure 4. The example in Figure 4 shows a scenario
where a window of packets for all layerise(, 10,8,5,6) was parti-
tioned into two windows (8,6,4,5) and (2,2,1,1) where 0.2. In

this approach the negative impact of overwriting affectdaglers

. proportionally, thus the QA mechanism has a better contnahe

buffer state.r is a configuration parameter callpdrtitioning fac-
tor and should be set based on the expected level of overwriting.

4.6 Peer Selection

As we mentioned earlier, increasing the number of sendespee
does not monotonically increase their overall effectiv@tighput
because two or more senders may share a bottleneck. PALS leve
ages this observation and uses a simple iterative mechamisien-
tify a subset of senders that maximize overall throughpufiohs
lows. The receiver starts with a randomly selected peer fhantist
of available peers. Then it periodically adds another rangeer
from the list of available peers to the subset of active sendaile
monitoring variations of both overall throughput and thgbput
of individual senders. If the overall throughput increasbe new
sender is kept. Otherwise, the receiver drops the new semder
tries another random peer after a period. The impact of a new
sender on overall throughput should be monitored over a-suffi
ciently long period period in order to avoid reacting to othe-
tifacts such as a transient congestion due to the startupeploa
similar peer selection experiments by other co-locateeéivecs.
Clearly, if the access link of the receiver is the bottlenetianging
the number of sender peers does not improve overall thraighp

5. EVALUATION

We have conducted preliminary evaluations of the PALS pro-
tocol using ns2 [18] simulation and present our initial tesin
this section. In our simulations, we have used a version &fPA
with synchronized requesting approach and window paniitigp
for packet assignment. We have also simplified PALS by ignor-
ing time-stamp of individual packets. For each period,eifRFC
or sliding window mechanism triggers QA to determine number
of packets that should be delivered for each layer (rather tpe-
cific time-stamp) and uses the packet assignment mechanidis: t
tribute required packets among senders. While our sinmattan
demonstrate dynamics of quality adaptation, packet assghand
sliding window mechanisms, they do not allow us to keep tick
duplicate and late packets. Configuration parameters faSH&-
ceiver are summarized in Table 2.

Figure 5 depicts our simulation scenario for a PALS sessitim w

[fced - - [fcpd [Sinkq] - - -[Sinkd]

pmm———

- 10Mbps T ms
ESPAL 15ms 5 Mbps

25

Figure 5: Simulation Setup

Bandwidth(Byte/sec)

EW MA Factor 0.25
C 50 KByte/sec
PktSize 1000 Byte
A 4*SRTT
r 0.1
1 0.2
« 2
rrbase 1000

Table 2: PALS Configuration Parameters

3 sender peers who cooperatively deliver a layered streansito-

gle receiver peer. Each sender uses RAP [3] for congestiatnato

and has a different RTT to the receiver. Figure 6 shows theSPAL
mechanism in action when three sender peers share a boklenex
link with 10 TCP flows. The line with the most variations in Fig
ure 6 is per-RTT average of overall throughput from all sende
smoother line is EWMA of overall throughput and the stepewis
line is the number of played back layers(delivered quality) as
a function of time. Furthermore, throughput of individuahslers
are also shown in this figure. Despite rather wide variationger-
RTT average of overall throughput, the QA mechanism manages
to rapidly increase the number of playing layers up to 4 Isyerd
then smoothly adjusts the delivered quality with variasiaf the
overall throughput.

To examine the behavior of the QA mechanism in the presence
of major changes in overall throughput, we repeated theiquiev
simulation but added a CBR flow that starts at t=30sec and stop
t=60sec, and consumes 3 Mbps bandwidth of the bottlenekk lin
Figure 7 depicts the behavior of QA in PALS in the presence of
the CBR source. This figure clearly shows that the througbput
sender peerd.€., bandwidth of RAP flows) quickly decreases in
response to change in network condition. This in turn thigdee
QA mechanism to quickly adjust the delivered quality by ghiog
all layers except the base layer. Once the CBR source staps an
the bandwidth becomes available, the QA mechanism deteists t
changes and rapidly increases number of layers up to théopsev
level.

Bandwidth(Byte/se

6. CONCLUSION AND FUTURE WORK

In this paper, we presented a new receiver-driven framefaork
P2P adaptive layered streaming, called PALS, where a receds
ordinates delivery of layer encoded stream from multipledees.
We described the framework, discussed the key componerit of
framework for coordination and adaptation, and addresagdus
design issues and tradeoffs. We also identified severdiecigihg
problems that arise in the design of such a receiver-drivechar-
nism for quality adaptive streaming.

This is obviously a starting point for our work on PALS. Werpla
to pursue this work in several directions. We are currerghydeict-

Behavior of Quality Adaptation Mechanism in PALS
300000 T T T T T

Delivéred Quali‘ty(\ayers) j
! per-RTT Average Throughput -------
EVI/MA Oyerall Throughput --------
i b
i i

250000

200000

150000

100000 [f

0 10 20 30 40 50 60 70 80 90 100
Time(sec)

Figure 6: QA in PALS in the presence of TCP background traf-
fic

Behavior of Quality Adaptation Mechanism in PALS
300000 T T T T T

Delivéred Qualiyty(\ayers) j
per-RTT Average Throughput -------
EWMA Overall Throughput --

250000
200000
150000
100000 i

50000

Time(sec)

Figure 7: QA in PALS with major variations in background
traffic

ing extensive and detailed simulations to obtain a deepdemn
standing of the dynamics of different mechanisms in PALf&ctf

of various configuration parameters, and interactions @may
components. In particular, we plan to explore various teples

to perform asynchronous requesting and incremental guadiap-
tation. We are also working on measurement-based tectsique
derive pattern of variations in overall throughput from ith@oming
packets. We plan to examine our proposed peer selectionanech

nism. Once a peer selection mechanism is added to PALS, we can

examine the impact of dynamics of peer participations on AL
performance. Finally, we plan to extend PALS to supportveeyi
of VBR layered encoded as well as MD encoded streams.

Acknowledgments

We would like to thank the anonymous NOSSDAV reviewers for
their feedback.

7[1] A?Ealfn%s%%wg'é%ncis, M. Handley, and S. Shenker, “A
scalable content-addresable network,Pimceedings of the
ACM SIGCOMM Aug. 2001.

[2] I. Stoica, R. Morris, D. Krager, F. Kaashoek, and
H. Balakrishnan, “Chord: A scalable peer-to-peer lookup
service for internet applications,” rroceedings of the ACM
SIGCOMM Aug. 2001.

[3] R. Rejaie, M. Handley, and D. Estrin, “RAP: An end-to-end
rate-based congestion control mechanism for realtime
streams in the internet,” iRroceedings of the IEEE
INFOCOM, New York, NY., Mar. 1999.

[4] S. Floyd, M. Handley, J. Padhye, and J. Widmer,
“Equation-based congestion control for unicaqt
applications,” inProceedings of the ACM SIGCOMIZ000.

[5] R. Rejaie, M. Handley, and D. Estrin, “Quality adaptatior
congestion controlled playback video over the internet,” i
Proceedings of the ACM SIGCOMI@ambridge, MA., Sept.
1999.

[6] V. N. Padmanabhan, H. J. Wang, P. A. Chou, and
K. Sripanidkulchai, “Distributing streaming media cortten
using cooperative networking,” Morkshop on Network and
Operating System Support for Digital Audio and Video
Miami Beach, FL, 2002.

[7] J. Apostolopoulos, T. Wong, W-T. Tan, and S. Wee, “On
multiple description streaming with content delivery
networks,” inProceedings of the IEEE INFOCQMO002.

[8] T. Nguyen and A. Zakhor, “Distributed video streamingeov
the internet,” inSPIE Multimedia Computing and
Networking Jan. 2002.

[9] “Abacast,” http://www.abacast.com

[10] “chaincast, http://www.chaincast.com

[11] “allcast,” http://www.allcast.com

[12] “vtrails,” http://www.vtrails.com

[13] D. A. Tran, K. A. Hua, and T. Do, “Zigzag: An efficient
peer-to-peer scheme for media streamingPinceedings of
the IEEE INFOCOM2003.

[14] S. McCanne, V. Jacobson, and M. Vettereli, “Receivévesh
layered multicast,” irProceedings of the ACM SIGCOMM
Stanford, CA., Aug. 1996, pp. 117-130.

[15] Z. Miao and A. Ortega, “Expected run-time distortiorsbe
scheduling for delivery of scalable media,’oc. of Packet
Video Workshop 20Q2ittsburgh, PA, Apr. 2002.

[16] H. Wang and A. Ortega, “Robust video communication by
combining scalability and multiple description coding
techniques,” irEl 2003 San Jose, CA, Jan. 2003.

[17] P. A. Chou and Z. Miao, “Rate-distortion optimized
streaming over best-effort networks,” Bubmitted tolEEE
Transactions on Multimedj&2001.

[18] “Network simulator - ns(version 2)3oftware on-line2002,
http://www.isi.edu/nsnam/ns/.

