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Abstract—This paper examines the problem of characterizing a solid understanding of an array of issues in two arés:
and assessing the global impact of the load imposed by a Peer-to-design and characterization of overlay-based applicatiand

Peer (P2P) overlay on the AS-level underlay. Toward this end, we At _ ;
make three contributions: (i) We describe the major challenges .(“) characterization of AS-level topology and BGP routing

in addressing this problem (e.g., capturing overlay snapshots, !n the underla_y' AnOther significant .Cha”enge is dealinghwi
determining the load generated by of individual connections, inaccurate, missing, or ambiguous information about the AS
and identifying the AS-level paths taken by individual overlay level underlay topology, AS relationships and tier projestt
connections) and present existing techniques for addressing the  and BGP routing policies.

issues along with their limitations. (i) We present a methodology This paper investigates the problem of assessing the load

that combines a collection of best practices for tackling the . db . | individual ASes in th twork
above challenges. (iii) We apply the proposed methodology to Imposed by a given overiay on individua €s In the networ

characterize several aspects of the load imposed by a real-world that we call AS-level underlay. It describes a number of
P2P overlay (e.g., Gnutella) on the AS-level underlay. This study significant steps towards exploring this issue and makes the
represents an initial attemp_t at deepening our understanding of fo||owing main contributions. First, we show that assegsghg
how overlays get mapped into the AS underlay. impact of an overlay on the underlay requires tackling three
challenging problems including) capturing accurate snap-

|. INTRODUCTION shots of the desired overlafji) estimating the load associated

€¥v(1)t|h individual overlay connectiongjii) determining the cor-
8§ponding AS-level path in the underlay for individual &g

onnections. We describe existing approaches to address th

roblems as well as their assumptions and limitations.

Peer-to-Peer (P2P) applications, such as P2P file sharin
P2P video streaming, have become increasingly popular ov
the Internet during the past few years. In these applicatio
participating peers form an overlay and contribute theit o Second. we present a methodoloav for assessing the impact
going bandwidth by forwarding some pieces of the content tc* ’I P he AS-level c?yl o gh dol P
their neighboring peers in the overlay. These P2P applicati Of an overlay on the evel underlay. Our methodology

contribute a significant fraction of Internet traffic. Th&ely mcorpprates a collection of the best known practices fpr
increase in the access link bandwidth of average Imerm“scapturlng accurate s_nz_ipshots of an overlay and, more im-
can be expected to contribute an even higher volume of Pagtantly, for determlnmgl the AS-level path corresporgdin

traffic on the Internet. to each overlay connection. We rely on snapshots of the

AS-level Internet provided by CAIDA for the same dates

The large volume of traffic associated with P2P applicationﬁ t our overlay snanshots are captured. In these snapshots
has led to a growing concern among ISPs, especially eot §:h inter-AS )éd epis annotated pb thé estimated tpe of
ISPs or Autonomous Systems (ASes), that need to carry t 9 y yp

P2P traffic relayed by their costumers. Recently, reseeﬂ;chée?atlonsmp between connectgd ASes. To |mprove_the acgura
nd consistency of the provided AS relationships, we test

and practitioners have focused on the idea of reducing t eem against another commonly used inference algorithm [5]
volume of external P2P traffic for edge ISP by localizing thsv ga . o o 9 .
e also infer the tier information for individual ASes using

connectivity of the P2P overlay [2]-[4]. This approach only. ) : .
deals with the local effect of an overlay on individual edg)é'erCIaSS'fy[G] tool applied to BGP routing table snapshots

ASes. Despite the large and growing volume of P2P traﬁretrleved from RouteViews [7] archive. Relying on t6eBGP

on the Internet, assessing thmbal impact of a P2P overlay ] tool, we perform a detailed simulation of BGP routing

on the network underlay, namely individual ASes, remains\%veeri;Peisfhgngg:?gsedoig?npsh:;g/;re :tk? 'Li\r/eé;:r?%r\l/i{l:nd
challenging problem and is not well understood. This is in P 9 P y

part due to the fact that investigating this problem re@ir%%nenSECtlon to determine the load experienced by individual

This technical report is an extended version of our papeméPassive and Third, we demonstrate our meth0d0|ogy by assessing the
Active Measurement Conference 2q1{ impact of four overlay snapshots of the widely deployed P2P



ASes and the connections among them. This is the most
obvious granularity for assessing load on the underlay—
individual ASes are managed as independent networks and are
primarily concerned with how traffic is exchanged with their
neighboring ASes because of of its immediate financial and
operational implications. The load on the AS-level underla
can be expressed in terms of AB-level load matrixvhere for
two connected ASed.S; and AS;, the element;; represents
the traffic load destined tel.S; from AS;.

Deriving the AS-level load matrix for a given overlay
requires the following steps:

« Capturing the topology of application-level overlay,
« Estimating the load on individual connections of the
overlay,

o For each overlay connection, identifying the AS-level
Fig. 1. Mapping the connections of a p2p overlay to the A®llemderlay. path in the underlay,

Adding the load of each overlay connection to all the int&-A
links for ASes along the corresponding AS-level path presid

application Gnutella on the AS-level underlay. These @yerl the aggregate load of all overlay connections on each Ager-
shapshots are collected over a four year period and illlestrﬂnk in the underlay,i.e, the load on link between!S; and
J1.e. %

the growth of an application-level overlay. AS; (I;;) in the AS-level load matrix.

I (Zjurhmethodologi]y produces an _esdt?mgtelof the aggregathh“e the basic idea is straight forward, some of these steps,
oad that an overlay imposes on indvidual ASes an CO@_’specially steps 2 and 3, pose serious practical challenges

nections bgtwegn ne|gh'bor|'ng ASes in the l!”de”ay- Qn;e tRlext, we describe common practices for achieving each one
rather detailed information is collected, an importantiesss ¢ <o steps and their related challenges

to represent the load in some aggregate but useful fashion.
Toward this end, we map peers in each overlay snapshot Capturing Overlay Topology

to edge ASesn the corresponding underlay snapshots and capturing the overlay topology for a given application is
characterize the resulting ASes in terms of size and tifasible if each peer provides its list of neighbors in resgo
membership. More importantly, we present a few temporgy a query é.g, Gnutella). A crawler can start with contact
and spatial characteristics of overlay load on the underlay jnformation for a few peers and progressively query known
The rest of this paper is organized as follows: In Section Iheers to discover other peers and connectivity among them.
we further elaborate on the problem of mapping an overlay §@hile capturing a snapshot of an overlay topology is feasible
the AS-level underlay, present an array of challengingessuthe captured snapshots is likely to biéstorted due to the
that arise in addressing this problem, and present exi&it:  dynamics of peer participationi.€., churn) and the resulting
nigues to deal with these issues and their limitations.i&&ct eyglution of the overlay [9]. More specifically, a non-neiiftile
Ill presents our methodology for assess load of an overlggction of discovered edges of an overlay topology may
to AS-level underlay. We use our proposed methodology ka reported by only one node implying that the status of
characterize the mapping of Gnutella overlay topologies @Ris connection has changed during the crawling process. We
the corresponding AS-level underlay in Section IV. Sechbn caj| theseuncertain edgesBoth inclusion or exclusion of
provides an overview of related work. Finally, we concludghese uncertain edges introduces distortions of the aagtur
the paper and sketch our future plans in Section VI. snapshots. Increasing the speed of the crawler can redece th
number of uncertain edges and improve the accuracy of the

resulting overlay snapshot.
The main problem that we are addressing in this paper

is mapping the traffic associated with a P2P overlay . Estimating the Load of Individual Overlay Connections
the AS-level underlay. In this process, the input is a P2P The observed load of individual connections is collectivel
overlay consisting of the IP addresses and port numbersdeftermined by several factors includin@) the number of
the participating peers together with their neighbor lidise peers that generate traffic.€, sources) and the pattern of
output of the process is a global AS-level load matrix in vahictraffic generation by these peet@) the location of source
the amount of traffic between each pair of connected ASespisers in the overlayjii) the topology of the overlayjv) the
provided in both directions. In Figure I, the overlay is sho deployed strategy by each peer to relag.( forward) all or
on top and ... part of the received traffic. For example, the data exchaatge r
In this section, we describe an array of challenges thamong different P2P connections in a BitTorrent swarm could
arise in quantifying the load imposed by an applicatiorelevbe significantly different based on their pairwise avaiabl
overlay on the network-level underlay consisting of indivdl bandwidth and their available content. In contrast, défer

Il. THE PROBLEM AND CHALLENGES



connections of a tree-based P2P streaming are likely tawbse 1) Traceroute-based Topology DiscoveAs discussed ear-
the same load since each peer should relay all of its receiva, previous studies used traceroute to discover rdetest
packets. paths between any pair of end points. Using a large number
The observed load on individual connections of a flaif geographically scattered vantage points, one can déscov
signaling overlay €.g, top-level overlay in Gnutella) dependsa large number of such end-to-end paths [11]. However, the
among other things, on the structure of the overlay topoltigy captured routes may only reveal a portion of the AS-level
we assume that the probability of issuing a query for all sodéopology. Furthermore, known limitations of tracerout®][1
is roughly the same, and each query is flooded within a certaian result in significant errors to the captured patbg.(
scope of its sourcee(g, n hops), the observed load of eaclincorrect edges in the topology). Finally, accurately niagp
connection depends on iketweennesand may significantly a router-level path to AS-level path is a non-trivial tasidan
vary depending on the structure of the overlay topology. frone to error as mentioned eatrlier.
summary, the load on individual connections of the overlay 2) BGP-based Topology Discoverygach received BGP
depends on many variables and we are not aware of an existipglate includes the AS-paths that the packets will take to
model for estimating per connection load in a general caseget to the origin AS of that BGP updates. Therefore, each
o ) BGP router keeps the AS-paths to all reachable ASes over
C. Identifying the AS-path for each Overlay Connection  {he |nteret. This can be used to infer a partial but reliable
Identifying the AS-level path for a given overlay connentioview of the Internet AS-level topology from the viewpoint
is the most important and most challenging step in mappid the receiving router. Public BGP archiving and monitgrin
(or assigning) the load of each connection onto the AS-levanters €.g, RouteViews [7]) often establish BGP peerings
underlay. The two approaches to tackle this problem &ye: with a number of volunteer ISPs across the Internet to get
Measuring AS-level Path&nd?2) Inferring AS-level Paths  access to BGP tables from multiple viewpoints and effebtive
1) Measuring AS-level Pathdn this method, using a large have a more complete picture of the AS topology. They usually
number of geographically distributed vantage points actios provide current and archived BGP tables that include A&gat
Internet, one can conduct end-to-end measurements toadstinfrom each participating AS to all other reachable ASes. One
the AS-level path between all possible pairs of end-pointsan extract all the AS links from these AS-paths and form an
This approach has two significant limitations: First, thetes- inferred AS topology. While the produced AS-level topology
level paths between end points are usually measured usimgnown to miss a significant portion of AS links [12], [13]
traceroute which is known to have a variety of problemgesp. peering links between lower tiered ASes), this amtroa
particularly, in the presence of routers implementing load very popular by networking researchers and engineers for
balancing [10]. Even if an accurate router-level path can lgenerating estimated connectivity structures of the weald
captured, to our knowledge, there is no reliable approaéis-level topology.
to accurately translate this into an AS-level route due to IP . . o
address aliasingi.¢, using multiple addresses on the samg: AS Relationships & Policies
router ) [11]. Second, to capture a complete set of AS-paths/ndividual ASes are often unwilling to reveal their re-
we need at least one vantage point at each edge AS whiate®nship with their neighboring ASes and the associated
peers are likely to exist. However, the number of vantagmlicies due to security and business concerns. Furthesmor
points in unique ASes is often significantly smaller than théhe number and nature of these relationships and associated
total number of edge ASes. This in turn limits the coveragmlicies may change with time. Internet registriesg( RIPE
of discovered end-to-end paths by this approach. and ARIN) provide such information but they are likely to
2) Inferring AS-level Pathin this approach, one can emu-be incomplete, inaccurate or obsolete. Given the large num-
late BGP routing over a snapshot representing the AS-levir of ASes ite., 30,000+), soliciting this information from
underlay topology to determine the AS-paths between amgdividual ASes (even if they are cooperative) is prohigily
pair of ASes. To infer the AS-level paths for a set of endexpensive.
to-end connections through simulation, one needs at leastn the absence of explicit information on AS relationships,
the following two pieces of information(i) an accurate and prior studies have relied on heuristic methods to categoriz
complete snapshot of the Internet AS-level topology, éid these relationships into the following three typ@sCustomer-
realistic relationships between connected ASes in terntiseof Provider,(ii) Peer-Peer, angiii) Sibling-Sibling. Gao [5] uses
associated BGP policies that each AS uses for prioritizitge relative degree of neighboring ASes to infer the type of
incoming updates and filtering outgoing updates. Howeger, @ach relationship. In [14] the authors extend Gao’s method
discussed below, obtaining this information is a challaggi and use new heuristics to increase the inference accuracy.

task in its own right. CAIDA uses the method proposed in [14] and provides AS-
) level topologies that are annotated by the AS-relationsipp.
D. Capturing AS-level Underlay Topology These techniques often assign “tier” information to indi-

There are two popular approaches to capture the Internétual ASes as well. The inferred AS relationships by these
AS-level topology, namelyraceroute-based topology discov-algorithm may result in error when the underlying heuristic
ery and BGP-based topology discovery are not true or the relationship does not exactly fall in one



of these three categories. Despite the potential errogeth@pplication. Gnutella has a two tier overlay topology with
heuristic techniques are considered as best known practiaesubset of peers, called ultrapeers, forming an unstreatur
for estimating AS relationships. top-level overlay, and the remaining peers, called leafgee

BGP routing is mostly based on the policies defined by eacbnnecting to the overlay through a few ultrapeers. We only
AS. The usefulness of any simulations involving policied wifocus on the top-level overlay among ultrapeers as examples
depend strongly on the accuracy of the policies implementesf a large-scale P2P overlay. We use a high performance P2P
However, the most common policy in effect is commonlgrawler called Cruiser (see [15]) to capture snapshots ®f th
referred to asvalley-free routingaccording to which no cus- Gnutella overlay in less than 10 minutes. To our knowledge,
tomer will provide transit service between two of its praatisl.  Cruiser is the fastest P2P crawler available and thus aaptur
In order to implement this, ISPs should filter out any routedle most accurate and complete snapshots of the Gnutella
that they have received from their providers in the outgoingyerlay.
announcements to other providers. t The Gnutella overlay is primarily used for exchanging
F. Quantifying the Impact on the Underlay control mes_sr_;\gese(g, query and responses). _Thgrefore, the

] . load on individual connection of the overlay is likely to be

So far we have discussed the challenges in accuralglg than the load in an overlay used for content deliveny, (
estimating the impact of an overlay on the AS-level underlg¥iirorrent or CoolStreaming). However, we are not aware of
in the form of AS-level load matrix. We note that the Ioa%ny technique taeliably capture overlay topology in content

matrix is a large (N*N) matrix where N is the number Ofygjivery p2p systems. Clearly, our methodology can be egpli
affected ASes in the Internet. While the load matrix is I|kel¥O any other overlay topology.

to be sparse,i.e., has many elements that are zero or very
small), it provides a rather detailed representation oflloa B. Estimating the Load of Individual Overlay Connections

the underlay which is difficult to comprehend. Therefore, it \ithout loss of generality, we assume in our analysis tHat al
is essential that we measure the impact with a small numMgfynections of the overlay experience the same average load
of aggregate properties that represent overall charattsiof i, oth directions. This simplifying assumption allows @s t
impact and provide useful insight. This raises two basicsgugy.ys on the mapping of overlay topology on the underlay
tions: (i) how does one identify useful aggregate properties @ls_jevel topology. If a reliable model for load of individua
load?, and(ii) how does one ensure that the proposed metrig§nections is available, it can be easily plugged into our
are not too coarse; that is, unab[e to revea_l informative- f'”FnethodoIogy by assigning two weights (one in each direytion
grained features due to aggregation/averaging? to each connection of the overlay. In this paper, we simply
I1l. OUR METHODOLOGY assume that the weight is one for all connections in both

This section describes our methodology for addressing soff{Eections.
of the challenges that we discussed in Section Il. Our methqsl Mapping Overlay Connections to the Underlay

ology composes a collection of best practices in addressquentifying the AS-path for each overlay connection is the

each one of the stated challenges. While our choices in . ) . d thi d
addressing each problem are specific, our methodology St challenging piece in our methodology. Toward this end,
take the following steps:

generic in the sense that if new and improved techniques #§f 'ax€ ) -
dealing with any the challenges are developed, they can PeBuilding AS-_Grogped Overlay: We group all peers W'th'n_
plugged into our methodology to increase its accuracy. ~ ©ach AS and identify those ASes as edge ASes for a given

An Overview: At a high level, our approach can be summa2verlay. This provides an "AS-grouped” view of an overlay

rized as follows. We capture the overlay topology of widelj!h€re each node represents an edge AS, and each edge
deployed P2P applications using a fast crawler. To ass&gBresents overlay connection(s) between two ASes. We also
the load on individual connections, we make the simplifyingSSCciate a weight to each AS to indicate the number of P2P
assumption that all connections of the overlay experienE@NNections that are mapped to an edge in the AS-grouped

roughly the same average load. To identify the AS-level pafiferiay. When peers at both ends of a P2P connection are
for individual connections of the overlay, we leverage thstb 0C@ted in the same AS, we simply drop that connection since
practices for capturing AS-level topology, and identifyithe [t d0€S not impose any inter-AS load on the underlay.

AS relationships and tier information. Finally, using dietd We use BGP routing table snapshqts taken on the same
simulation of BGP routing over the annotated AS-level tepofi2t€ s the overlay snapshots and provided by the RouteViews
ogy, we infer AS-level paths between all edge ASes in ordBfoiect [7], to map the IP address of a given peer to its
to assess load on the AS-level overlay. In the rest of tHi9rresponding AS. In the process, we identify the AS that

section, we elaborate on each one of the above steps in PaF the longest matching prefix with the peer's IP address by
methodology. leveraging CAIDAs Coral Reef package.

2) Determining AS-level Underlay Topology:We use shap-
A. Capturing Overlay Topology shots of the AS-level Internet topology provided by CAIDA
In our study, we use multiple snapshots of the top-level-ovdd6]. These snapshots of the AS-level topology are contgduc
lay of Gnutella. Gnutella is a widely-deployed P2P file shari using BGP routing tables from the RouteViews project for the



. . . . TABLE |
corresponding dates. Furthermore, each inter-AS link & th ggppeoLicies usep To IMPLEMENTAS RELATIONSHIPS INC-BGP

topology is annotated with the relationship between cotatkc

ASes. These relationships are estimated by an algoritApgustoners:

applying the “valley-free routing” constraint on the topgy. oy T GOV PreR

Briefly, the algorithm works byi) assuming that the AS with <-custoners:

the highest degree along each path has the highest positigg;zlef’gf""’ref 100

in the hierarchy (top of the hill) , angii) assigning chains deny if (community COWLPROV) || (community COVM PEER),

of costumer-provider relationships to edges that are Mangi  commnit ) +enove COWPEER

at each side of the top AS all the way to the ends of thepeers:

path. Furthermore, other heuristiesd, degree difference) and  [oca or ot ap

information from routing registries (e.g., RIPE, ARIN) weer - >provi ders: , ,

used to infer peer-peer and sibling-sibling relationsHips. ot 1 T ot proy ) |1 (community COVMLPEER)
Second, we leverage the “LogRelinfer” tool developed at community remove COWM PEER

the University of Massachusetts - Amherst (implementirg th ™ Cermontty append oW PROY,

algorithm proposed by Gao in [5]) on CAIDAs annotated !ocal-pref 60 A

snapshots of AS-level topology to explore any INCONSISEENC 3 bl | nes: (he f11ter no comni ty chanoe)

between this algorithm and CAIDA's algorithm. Our compar-

ison revealed that more than 95% of derived relationship are

consistent. Furthermore, CAIDA's derived topology consaa o L

larger number of ASes and relationships. Therefore, welgimg0licies by individual ASes, we adopt a commonly accepted

use these snapshots after the mentioned validation. We 84 intuitive set of policies in our simulations. .

used another tool “TierClassify” (implementing the algom We n_ote that representlng each.AS as a single router in our

presented in [6]) to classify ASes into tiers. This tool niyain Simulation results in producing a single AS-level path lesw

relies on the fact that all tier-1 ISPs should be intercotenbc ©aCh given pair of edge ASes. This implies that potential

with one another and therefore tries to find a clique among tA¥/ltiple AS-level paths that may exist between two ASes in

ASes with highest degrees. As we used this tool with the A%actice (as presented in [17]) are not incorporated in our

relationships obtained from CAIDA, we faced a large numbé&fmulations. While this assumptlon.sc_)mewhat.3|mpl|f|es the

(~ 30) ASes classified as tier-1.While the commonly acceptdtoblem, we are not aware of any existing technique to captur

tier-1 networks are about 10-15, we slightly modified the'soo these subtle behavior of BGP routing. While the basic idea of

parameters to reduce the number of tier-1 ASes to 15. using simulation is rather straight forward, we have faced a

few problems that are worth mentioning.

D. Inferring AS-level Paths of Each Overlay Connection Relationship Cycles in the AS-level Topologyin our initial

We use detailed simulations of the BGP protocol over ogimulations over annotated underlay AS-level topologyrfro
annotated snapshots of the AS-level underlay topology %IDA, the BGP protocol did not converge. Further_ examina-
derive the AS-level path for each connection of the overlal}ons revealed that the annotated topologies containeeraiev
Toward this end, we use th&-BGP simulatot. C-BGP is felationship cycleg. For instance, a S|mple. 3-hop cycle is
a multi-purpose BGP simulator [8] that can compute th@rmedwhen/SP; is a customer of SP,, ISP, is a customer
outcome of the BGP decision process on a desired set % SF3 and/SP; is a customer of SP;. In addition to being
interconnected routers with arbitrary BGP polici€sBGPcan intuitively incorrect, these cycles led to infinite osdiitms of

also take an annotated AS-level topology as input and convite BGP protocol. To fix this problem, we identified all such
it into a router topology where each AS is represented by!@PPS in each topology and then broke the loop by changing

router. The annotated relationship for each link is thensra the refationship on the edge that was most counter-ineuitiv
lated into a predefined set of BGP policies that are applied 'fb Particular, we changed the relationship on the link where

each side of the respective BGP peering. The basic ideadeHyStomer degree was larger than the provider degree. Iis case
the policies is to implementalley-freerouting. Table | shows where more than one such link was identified, we selected the

the common routing policies that are used GYBGP. This link with the largest difference in the degree of the custome
table shows the following important point§ communities @nd provider ASes. . '

are used to mark incoming and outgoing routés, local- Policies for Sibling Relationship: Unknown policies for Sib-
preferencesgive first, second and third priorities to routeding refationship introduce another set of unknown vaesbl
received from customers, peers and providers, respegtivdp Our BGP simulations. Sibling ASes are simply defined as
(iii) route filtering is used to prevent redistributing providethosé owned by the same company, however, the deployed
and peer routes to other providers and peers in order toengeflicies between sibling ASes may significantly vary across
valley-free paths. In summary, in the absence of reliable iflifferent companies based on the size of ASes, their lagsitio

formation about deployed (potentially heterogeneousjimgu @nd purposes.
Considering the shared ownership status between sibling

developed at UCL, Belgium; http://cbgp.info.ucl.ac.be/ ASes, we initially used the policy of sharing all routes and



TABLE Il TABLE IV

SNAPSHOTS OFGNUTELLA OVERLAY TOPOLOGY MAPPING PEERS TO THE EDGEASES
Snapshot Date | #Peers #Connections Snapshot| #Peers #Edge ASes # Edge ASes (w 100+ peers)
G-04 2004-11-20] 177k 1.46M G-04 177k 1,872 154
G-05 2005-08-30f 681k 5.83M G-05 681k 2,670 290
G-06 2006-08-25| 1.0M 8.64M G-06 1.0M 3,462 414
G-07 2007-03-15| 1.2M 9.80M G-07 1.2M 3,684 460

their preferences between sibling ASes as if they were one2) Snapshots of BGP Routing Tablé/e used daily snap-
AS. However, this strategy also resulted in formation afhots of BGP routing tables from the RouteViews archive for
cycles effectively preventing BGP from converging. Furthehe same days that our overlay snapshots were collected as
investigations revealed that sharing all routes and peef&#s shown in Table Ill. This ensures that each overlay is mapped
between sibling ASes may not always be appropriaince to a corresponding AS-level underlay. The table summarizes
assigning proper routing policies to each pair of siblingeAS important statistics about each BGP snapshot including the
is not feasible, we modified all sibling relationships to Peenumber of reported prefixes in each snapshot, the number
to-Peer relationships over which no transit service is jiey. of unique ASes that announced at least one netwoek, (
originating ASes), and the total number of unique ASes
observed in the snapshot. The significant growth in the numbe
of prefixes and ASes (both originating and total) during the
This section presents the effects of a Gnutella top-levRjur year period demonstrates the growth of the Internet¢ Th

overlay on the AS-level underlay from several angles. Firslifference between originating and total ASes (around 200-

we present our datasets and then we examine the map[Bo® ASes) can be associated with transit ASes that do not
of peers to their corresponding edge ASes. Finally, we mapnounce any prefixes.

overlay connections to the AS-level underlay and assess the
load on core ASes. B. Mapping Peers to the Underlay

IV. INITIAL CHARACTERIZATION OF THE EFFECT OF
OVERLAYS ON THE UNDERLAY

Identify Edge ASes:We start by mapping peers in our overlay
A. Datasets o
shapshots to the AS-level underlay to identify edge ASes.
1) Snapshots of Gnutella Top-level Overlajie use four Taple |v summarizes the number of edge ASks.(ASes
snapshots of the top-level overlaye(, connectivity among \yhere peers are located) and the number of major edge ASes
ultrapeers) in the Gnutella file sharing application. Thesgat host more than 100 peers. Given the number of active
snapshots are captured using a high-speed P2P crawled callses in the Internet for each year from Table Iil, Table IV
Cruiser These snapshots are collected in 4 consecutive yegqgicates thati) the edge ASes cover 10%-15% of all ASes in
starting at 2004. Table Il summarizes the main informatiqpe Internet i) only 1% to 3% of the edge ASes have more
associated with the collected overlay snapshots includatg than 100 peers. These results demonstrate that our overlay
of capturing, number of peers, and number of connections. Wgyology has a rather wide footprint across the Internet.
use 'the labels G-xx to refer to these snapshots throughisut §istribution of Peers per Edge AS: Figure 2 depicts the
section. . _distribution of peers among edge ASes for all four overlay
Table Il reveals that the number of coexisting peers in “l‘?]apshots. In Figure 2(a) the distribution of AS peer pdjnria
top level overlay of Gnutell_a has become more than six timgs shown in a semi-log scale CCDF plot for all four overlay
larger over the 4 year period. The number of edges has algpynshots. This Figure shows two interesting poifijsthe

proportionally grown. distribution of peers across ASes is very skewed. Depending

) ) . on the overlay snapshot, 20-30% of edge ASes host only a
For example, consider a small overseas branch of a large 1S® sibling . o .
AS. In this case, the BGP policies should be strictly asymmetriprevent Single peer, and 60-70% of ASes host less than 10 peers, while

any transit traffic to go through the small AS. Alternativedynational level less than 10% of ASes host between 100 to 10,000 pé#grs.
ISP that uses two sibling ASes on each coast of the U.S., dremlbpt a
symmetric set of policies between them with minimal filtering toximaze
the benefit of the peering relationship.

TABLE Il
SNAPSHOTS OFBGP ROUTING TABLE

Percentage of ASes (CCDF)
(2]
o
Percentage of all peers

20}
Date | # Prefixes  # Originating ASes _ # Total ASes T 100 s o000 I m 7 v
2004-11-20| 165,406 18,499 18,733 Number of Peers per AS AS Ronk
2005-08-30| 185,256 20,424 20,628 (a) AS peer population(CCDF) (b) Peer dist. among ASes(CCDF)
2006-08-25| 210,098 23,038 23,262
2007-03-15| 229,237 24,669 24,923

Fig. 2. Distribution of peers over ASes



TABLE VI
DISTRIBUTION OF EDGEASES ACROSS DIFFERENT TIER$% OF ASES)

Comcast(2290 e K———= = X SBC(7132
SBC(7132)<X ™" E-ed L 1 Cox(22773)
Agga)'(l' 247778%x R —— ,.\_\_\/\; g;bg\ﬂg%)n(elm) Snapshot  #Ased Tier 1 Tier2 Tier3 Tier 4
Cablevision 61222; ‘«\/_,/.A/—V/LV%A Rogers(812) G-04 1872| 0.8 50.2 43.8 4.9
Adelphia(78430 R v © AOL(1668 G-05 2,670 0.6 47.7 44.9 6.3
Charter(20115®. . ...)\, @-- -- >~ @ Charter(20115) G-06 3,462 | 0.4 424 49.0 7.8
Rogers(812% - . "7{*7—7,‘77—A5haw(6 27) G-07 3,684| 0.4 425 45.9 10.5
Shaw(6327 JoX » Telewest55462;
AT&T(7018) / <& f—@ Comcast(33287)
. G"'/
2004 2005 2006 2007

is that peers seem to be moving from tier-3 and tier-1 ASes
to tier-2 ASes during this 4 years. The large fraction of peer
Fig. 3. Identity & evolution of top-10 edge ASes hosting lighnumber of in tier 1 in the 2005 overlay snapshot is primarily caused by
peers AS7132 (SBC). In the 2005 snapshot, SBC hosts the highest
number of peers and is classified as a tier-1 AS whereas in
other years SBC is classified as tier 2. This suggest that the
while the collected snapshots are far apart in time, theybéxh large fraction of peers in 2005 is a result of a mis-clasdifica
a very similar trend. Figure 2(b) depicts the distributidralh of SBC in 2005.
peers among the ASes sorted by peer population in semi-lograble VI shows the distribution of edge ASes across dif-
scale CCDF format. As shown in this figure, the top 10 ASdgrent tiers for all four snapshots. Clearly, a majority dfje
represent between 30-40% of all peers and the top 100 A9€Ses are evenly divided between tier-2 and tier-3 while alsma
represent about 80% of all peers. but growing fraction of these ASes are tier-4. Comparing thi
Identity and Evolution of Edge ASes: We now turn our table with Table V reveals that there is a large number of tier
attention to the identity of major edge ASes and examirkand tier-3 ASes with small peer populations whereas the
their evolution over time. Figure 3 shows the top-10 edgmverage peer population in a tier-2 AS is much larger.
ASes (ordered from top to bottom on the y axis) based on the
number of peers they host, and the evolution of top-10 edfe Mapping Edges to the Underlay
ASes across the four overlay snapshots. While the populationye now characterize the load imposed by overlay connec-
of peers and thus the ranking of top-10 ASes change o\fJns on the AS-level underlay by focusing on “transit ASes”
time, 60% of the edge ASes consistently remain in the tophese are the ASes along AS-paths for individual overlay con
10 during the 4 year period. We note that the change in thections excluding the first and last ASes (edge ASes) where
population of peers in an AS could be due to a variety gfeers at the end of each connections reside. Table VII shows
reasons. For example, in some cases an ISP could changenhésnumber of connections, the number of corresponding AS-
allocated IP addresses, or its policies for using AS numbepaths and the number of AS-paths with 100+ connections
e.g, AS numbers 22909 and 33287 both belong to Comcair all four overlay snapshots. Both the number of overlay
Interestingly AT&T has two top-10 ASes in 2004 but none igonnections and unique AS-paths are growing over time. But
2007. the number of AS-paths is roughly 2 orders of magnitude
Distribution of Peers & Edge ASes across TiersAnother smaller than then number connections.
interesting issue is to examine the position of peers andTo examine the mapping of overlay connections to AS-paths
edge ASes in the AS-level hierarchye(, AS tiers). Table V more closely, Figure 4(a) depicts the CCDF distribution of
shows how the peers are distributed in ASes at differetifie number of overlay connections per AS-path between any
tiers. This table shows that a majority (65% - 82%) of peegsir of connected edge ASes in log-log scale for all overlay
are located in tier-2 ASes. This is reasonable because mes&pshots. This distribution is very skewed showing thatiab
of the large residential providers are tier-2 ASes. A small0% of paths have less than 10 connection while 1% of paths
portion (2% - 13%) of peers are in tier-1 ASes. These athserve more than 200 connections.
large telecom companies with both residential services adbserved Load by Individual Transit ASes: Since we
backbone infrastructure. Another interesting trend inldab assumed that all connections have the same load, we simply
qguantify the load on each transit AS by the number of

Year

TABLE V
DISTRIBUTION OF PEERS ACROSS EDGASES WITH DIFFERENT TIERS(% TABLE VII
OF PEERS IN EACH SNAPSHO)T MAPPING OVERLAY CONNECTIONS TO THEAS-LEVEL UNDERLAY
Snapshot| Tier 1 Tier2 Tier3 Tier 4 Snapshot| #P2P Conn. #AS Paths  %AS Path (w 100+ conn.)
G-04 6.5 70.6 225 0.4 G-04 1.46M 192k 2.0
G-05 12.7 64.9 21.9 0.4 G-05 5.83M 384k 2.9
G-06 2.6 80.4 15.8 1.1 G-06 8.64M 605k 2.8

G-07 1.9 81.1 16.3 0.7 G-07 9.80M 684k 2.7
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Fig. 4. (a) Dist. of number of overlay connections per eachpaghs, (b) Number of overlay connections passing through &aosit AS, (c) Number of
AS-paths crossing through each transit AS.
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Fig. 5. (a) Scatterplot of number of crossing AS-paths vs. remab overlay connections passing through each AS, (b) DBisAS-path length between
connected edge ASes, (c) Dist. of AS-path length for all layeconnection.

overlay connections crossing that AS., number of overlay cross AS-paths exceeds a certain threshold (a few hundred),
connections for which this AS appears on the correspondititgir observed load increases at a much faster pace .
AS-level path. Figure 4(b) shows the number of overlaistribution of AS-Path Length: One way to quantify the
connections that cross each transit AS in log-log scale eshémpact of an overlay on the AS-level underlay is to character
ASes are ranked from high to low based on their overafle the length of AS-paths for individual overlay connentio
observed load. This figure demonstrates that the load ositrafrigure 5(b) shows the histogram of AS-path length across all
ASes is very skewed. A small number of ASes carry a largeS-paths used by the overlay for each of the 4 snapshots and
volume of traffic while the load on most transit ASes is ratheran be used as a reference. This figure shows that around 40%
small. Interestingly, the shape of this histogram for allirfo of the used paths are three AS hops long while 80% of the
snapshots is very similar except for the outward shift in@nopaths in each overlay are at most 4 AS hops.
recent snapshots due to their larger population and numbeFigure 5(c) depicts the histogram of AS-path length across
of connections. This similarity in the load histogram cobk all overlay connections for each overlay snapshots. Innesse
due to two observationgi) stability of most top-10 edge ASesthis can be viewed as a “weighted” version of Figure 5(b)
over the four year period, ar(@) the constraint of valley free where each path is weighted by the number of corresponding
routing over the hierarchical structure of AS-level undgrl  connections. The figure shows similar patterns across all
To further investigate the underlying causes for the olezkrvoverlay snapshots despite the change in the number of peers
skewed histogram of load among transit ASes, we examiagd their connections. The two histograms are very simiiar b
the number of unique AS-paths (associated with overldlge path length for all connections of the overlay is slightl
connections) that pass through each transit AS in Figurg 4(ghorter indicating that a higher fraction of connections ar
This figure shows that the histogram of AS-paths crossiggsociated with shorter paths.
per transit ASes has a very similar shape. This suggests tlu#ntity and Evolution of Transit ASes: To investigate the
the number of crossing connections for individual ASes &ffect of transit ASes more closely, we examine the identity
primarily determined by BGP routing. Figure 5(a) validatesf the top-10 transit ASes that observe the highest number of
this observation by showing the number of crossing AS-patheossing overlay connections, and their evolution oveetim
and crossing connections through each transit AS (as x drdure 6. The top transit ASes are ordered vertically from to
y values) in a scatter-plot. This figure essentially commedb bottom for each overlay snapshot. This figure shows that
the previous two distributions, and confirms that the obegrvonly 4 transit ASes (including top 3 ASes) remain stable s€ro
load by individual ASes primarily depends on their appeeganall four snapshots. However, the changes in the other transi
across associated AS-paths. Interestingly, once the nuafbeASes is more chaotic. This is due to the fact that ranking of
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Year turn can cause other problerhsOn a more technical level, a

number of studies have aimed at quantifying the impact of P2P
applications on the ISPs. Karagianmisal. [18] compare the
load on the ISPs for the cases of traditional client-sef®2R,
local caching and locality-aware peer-assisted contdiviedg
transit ASes is affected by a combination of factors inalgdi and concludes that the last type provides the most benefits in
changes in the topology of AS-level underlay, changes terms of both ISP load and the observed performance by the
routing policies, and the location of peers. users. They suggest that if the amount of locally available
We have randomly rewired the connections of each overlagntent is large, the applications can make use of the {pcall
to generate a comparable random graph and then calculadedilable content to reduce the load on the external links of
the associated AS-paths over the same AS level topologye ISP. Another study by Gummasdt al. [19] presents an
The histogram of AS-path length in the randomized overlanalysis of the traffic associated with the KazaA P2P file
(not shown) is nearly identical to Figure 5(c) for all overla sharing application at the University of Washington campus
snapshots. network. They also show that there is a substantial pergenta
Diffusion of Traffic in the AS Hierarchy: The most in- of requests that can be resolved locally, effectively rauyc
teresting way to quantify the impact of an overlay topologshe traffic on the external link. Both studies are based on
on the AS-level underlay is to determine the fraction of loaplacket traces captured locally at the ISP gateways. Althoug
that is propagated upward in the AS-level hierarchy towardsey were successful in inspiring works on localizing thé®P2
top-tiered ASes. Table VIII shows the percentage of pathsffic, their results are only valid for specific types ofwetks
and percentage of overlay connections whose top AS is tiend can hardly be extended to other networks of other types
1, tier-2 and tier-3 in each overlay snapshot. The columasd sizes. Furthermore, the P2P traffic pattern between ISPs
marked “unweighted” show the percentage of the used AB-not part of these studies.
paths reaching each tier while the columns marked “weighted In response to the ISPs concerns and actions against P2P
represent the percentage of paths weighted by the numbraffic, several research papers and Internet drafts hage be
of overlay connections using that path, effectively shawinpublished in the recent years. In the first set of papers, the
the percentage of overlay connections reaching each tiés. Tcommon approach is designing ISP-friendly P2P application
table shows that more than half of the paths reach tier-1 AS8gch P2P applications use a variety of techniques to enable
and roughly 40% of the paths peak in a tier-2 AS. each peer to discover other local peers and effectively famm
The percentage of connections that reach a tier-1 AS dgerlay that is “locality-aware” without any explicit astince
higher than the number of paths reaching tier-1, indicatiag from the network layer. A few examples for suitliependent
a larger fraction of connections are mapped to these paltes. Tocality aware overlaysare [20]-[23] where the first two use
percentage of connections that top in a tier-2 AS is aroud 18andmarks, the third uses DNS domain names and the last one
to 37% which is smaller than the percentage of paths reachimges LDAP protocol to detect locality among peers.
tier-2. Interestingly, the percentage of connections tisgt  Subsequent papers in this area propose methods that rely on
in tier-1 ASes decreases over time while the percentage édtooperation interface between the network layer (ISP) and
connections that top in a tier-2 ASes is increasing. The&s®l the application layer (P2P) through which the ISP provides
suggest the increasing connectivity between ASes in lowgscessary information to the application with the goal of
tiers which reduces the fraction of connections that have figaking the overlay load less “costly” for the ISP and alsoenor
climb the hierarchy up to tier-1 ASes. desirable (based on the applications goal) for the apjicat
Oracle [3], is a server run by the ISP with the underlay

information to which the local peers send their list of caladé

During the past few years, the ever-increasing portion ghers |t is responsible for sorting them according to tHeisS

Internet traffic resulting from P2P applications has b_ec‘amepreference and returning them to the requesting peer. In P4P
concern for commercial ISPs. Due to the symmetric natu

: IEtriC !?] the network information is provided to the applicat®on
and steady pattern of P2P traffic, these ISPs find it costly

to accommodate it and try to limit it by simply blocking s, the summer of 2008, the FCC issued a ruling against a majorHsP t
certain P2P applications or regulating the traffic rate,olvhih  deployed such practices and asked the ISP to stop them.

Fig. 6. Identity and evolution of top-10 transit ASes obsagvthe largest
volume of traffic

V. RELATED WORK



local tracker (e.g, BitTorrent) which then implements those12]
information in assisting peers with neighbor selection.

To the best of our knowledge no previous work has be
done on thegglobal impact of P2P i(e., overlays) on the AS-
level underlay. In particular the following questions hana
been answered by previous studies: (i) How does the traﬁ}é]
generated by a given P2P application in the overlay impact
the AS-level underlay? (i) What is the pattern of P2P traffiﬁS]
flow among ISPs at different levels of the Internet’s hiengrc
(tiers)? (iii) How similar (or dissimilar) are the patterosP2P
traffic in different geographical regions? (iv) Which ASes arl16]
affected the most by the traffic imposed by an overlay? [17]

VI. CONCLUSION AND FUTURE WORK

In this paper, we explored the problem of quantifying thﬁS]
load that a particular overlay contributes to the AS level
underlay. We identified the challenging components of this

problem and described existing techniques to address eHch

component. We presented a methodology for mapping the
load of an application-level overlay on the AS-level undegrl
that incorporates a collection of best existing practidafs.
applied our methodology to characterize the load of realdvor
P2P overlays on the AS-level underlay. Our study deepens {Ad
understanding of interactions between application levetlay
and the underlay.

As part of our future work, we plan to investigate how
changing the geographical location of peers and their c 3
nectivity change the imposed load on the AS-level underlay.
Furthermore, we plan to derive and incorporate traffic model
for different P2P application into our methodology. Figall
we leverage pricing models that are used by ISPs to determine
how structure and workload of an overlay determine revenue
of ISPs in the AS hierarchy of the underlay.

(22]
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