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Abstract—This paper examines the problem of characterizing
and assessing the global impact of the load imposed by a Peer-to-
Peer (P2P) overlay on the AS-level underlay. Toward this end, we
make three contributions: (i) We describe the major challenges
in addressing this problem (e.g., capturing overlay snapshots,
determining the load generated by of individual connections,
and identifying the AS-level paths taken by individual overlay
connections) and present existing techniques for addressing these
issues along with their limitations. (ii) We present a methodology
that combines a collection of best practices for tackling the
above challenges. (iii) We apply the proposed methodology to
characterize several aspects of the load imposed by a real-world
P2P overlay (e.g., Gnutella) on the AS-level underlay. This study
represents an initial attempt at deepening our understanding of
how overlays get mapped into the AS underlay.

I. I NTRODUCTION

Peer-to-Peer (P2P) applications, such as P2P file sharing or
P2P video streaming, have become increasingly popular over
the Internet during the past few years. In these applications,
participating peers form an overlay and contribute their out-
going bandwidth by forwarding some pieces of the content to
their neighboring peers in the overlay. These P2P applications
contribute a significant fraction of Internet traffic. The likely
increase in the access link bandwidth of average Internet users
can be expected to contribute an even higher volume of P2P
traffic on the Internet.

The large volume of traffic associated with P2P applications
has led to a growing concern among ISPs, especially edge
ISPs or Autonomous Systems (ASes), that need to carry the
P2P traffic relayed by their costumers. Recently, researchers
and practitioners have focused on the idea of reducing the
volume of external P2P traffic for edge ISP by localizing the
connectivity of the P2P overlay [2]–[4]. This approach only
deals with the local effect of an overlay on individual edge
ASes. Despite the large and growing volume of P2P traffic
on the Internet, assessing theglobal impact of a P2P overlay
on the network underlay, namely individual ASes, remains a
challenging problem and is not well understood. This is in
part due to the fact that investigating this problem requires
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Active Measurement Conference 2010[1].

a solid understanding of an array of issues in two areas:(i)
design and characterization of overlay-based applications, and
(ii) characterization of AS-level topology and BGP routing
in the underlay. Another significant challenge is dealing with
inaccurate, missing, or ambiguous information about the AS-
level underlay topology, AS relationships and tier properties,
and BGP routing policies.

This paper investigates the problem of assessing the load
imposed by a given overlay on individual ASes in the network
that we call AS-level underlay. It describes a number of
significant steps towards exploring this issue and makes the
following main contributions. First, we show that assessing the
impact of an overlay on the underlay requires tackling three
challenging problems including(i) capturing accurate snap-
shots of the desired overlay,(ii) estimating the load associated
with individual overlay connections,(iii) determining the cor-
responding AS-level path in the underlay for individual overlay
connections. We describe existing approaches to address these
problems as well as their assumptions and limitations.

Second, we present a methodology for assessing the impact
of an overlay on the AS-level underlay. Our methodology
incorporates a collection of the best known practices for
capturing accurate snapshots of an overlay and, more im-
portantly, for determining the AS-level path corresponding
to each overlay connection. We rely on snapshots of the
AS-level Internet provided by CAIDA for the same dates
that our overlay snapshots are captured. In these snapshots,
each inter-AS edge is annotated by the estimated type of
relationship between connected ASes. To improve the accuracy
and consistency of the provided AS relationships, we test
them against another commonly used inference algorithm [5].
We also infer the tier information for individual ASes using
TierClassify[6] tool applied to BGP routing table snapshots
retrieved from RouteViews [7] archive. Relying on theC-BGP
[8] tool, we perform a detailed simulation of BGP routing
over these annotated snapshots of the AS-level underlay and
we infer the corresponding AS-level path for each overlay
connection to determine the load experienced by individual
ASes.

Third, we demonstrate our methodology by assessing the
impact of four overlay snapshots of the widely deployed P2P



Fig. 1. Mapping the connections of a p2p overlay to the AS-level underlay.

application Gnutella on the AS-level underlay. These overlay
snapshots are collected over a four year period and illustrate
the growth of an application-level overlay.

Our methodology produces an estimate of the aggregate
load that an overlay imposes on individual ASes and con-
nections between neighboring ASes in the underlay. Once this
rather detailed information is collected, an important issue is
to represent the load in some aggregate but useful fashion.
Toward this end, we map peers in each overlay snapshot
to edge ASesin the corresponding underlay snapshots and
characterize the resulting ASes in terms of size and tier
membership. More importantly, we present a few temporal
and spatial characteristics of overlay load on the underlay.

The rest of this paper is organized as follows: In Section II,
we further elaborate on the problem of mapping an overlay on
the AS-level underlay, present an array of challenging issues
that arise in addressing this problem, and present existingtech-
niques to deal with these issues and their limitations. Section
III presents our methodology for assess load of an overlay
to AS-level underlay. We use our proposed methodology to
characterize the mapping of Gnutella overlay topologies on
the corresponding AS-level underlay in Section IV. SectionV
provides an overview of related work. Finally, we conclude
the paper and sketch our future plans in Section VI.

II. T HE PROBLEM AND CHALLENGES

The main problem that we are addressing in this paper
is mapping the traffic associated with a P2P overlay to
the AS-level underlay. In this process, the input is a P2P
overlay consisting of the IP addresses and port numbers of
the participating peers together with their neighbor lists. The
output of the process is a global AS-level load matrix in which
the amount of traffic between each pair of connected ASes is
provided in both directions. In Figure II, the overlay is shown
on top and ...

In this section, we describe an array of challenges that
arise in quantifying the load imposed by an application-level
overlay on the network-level underlay consisting of individual

ASes and the connections among them. This is the most
obvious granularity for assessing load on the underlay—
individual ASes are managed as independent networks and are
primarily concerned with how traffic is exchanged with their
neighboring ASes because of of its immediate financial and
operational implications. The load on the AS-level underlay
can be expressed in terms of anAS-level load matrixwhere for
two connected ASesASi andASj , the elementlij represents
the traffic load destined toASj from ASi.

Deriving the AS-level load matrix for a given overlay
requires the following steps:

• Capturing the topology of application-level overlay,
• Estimating the load on individual connections of the

overlay,
• For each overlay connection, identifying the AS-level

path in the underlay,

Adding the load of each overlay connection to all the inter-AS
links for ASes along the corresponding AS-level path provides
the aggregate load of all overlay connections on each inter-AS
link in the underlay,i.e., the load on link betweenASi and
ASj (lij) in the AS-level load matrix.

While the basic idea is straight forward, some of these steps,
especially steps 2 and 3, pose serious practical challenges.
Next, we describe common practices for achieving each one
of these steps and their related challenges.

A. Capturing Overlay Topology

Capturing the overlay topology for a given application is
feasible if each peer provides its list of neighbors in response
to a query (e.g., Gnutella). A crawler can start with contact
information for a few peers and progressively query known
peers to discover other peers and connectivity among them.
While capturing a snapshot of an overlay topology is feasible,
the captured snapshots is likely to bedistorted due to the
dynamics of peer participation (i.e., churn) and the resulting
evolution of the overlay [9]. More specifically, a non-negligible
fraction of discovered edges of an overlay topology may
be reported by only one node implying that the status of
this connection has changed during the crawling process. We
call theseuncertain edges. Both inclusion or exclusion of
these uncertain edges introduces distortions of the captured
snapshots. Increasing the speed of the crawler can reduce the
number of uncertain edges and improve the accuracy of the
resulting overlay snapshot.

B. Estimating the Load of Individual Overlay Connections

The observed load of individual connections is collectively
determined by several factors including:(i) the number of
peers that generate traffic (i.e., sources) and the pattern of
traffic generation by these peers,(ii) the location of source
peers in the overlay,(iii) the topology of the overlay,(iv) the
deployed strategy by each peer to relay (i.e., forward) all or
part of the received traffic. For example, the data exchange rate
among different P2P connections in a BitTorrent swarm could
be significantly different based on their pairwise available
bandwidth and their available content. In contrast, different



connections of a tree-based P2P streaming are likely to observe
the same load since each peer should relay all of its received
packets.

The observed load on individual connections of a flat
signaling overlay (e.g., top-level overlay in Gnutella) depends,
among other things, on the structure of the overlay topology. If
we assume that the probability of issuing a query for all nodes
is roughly the same, and each query is flooded within a certain
scope of its source (e.g., n hops), the observed load of each
connection depends on itsbetweenness, and may significantly
vary depending on the structure of the overlay topology. In
summary, the load on individual connections of the overlay
depends on many variables and we are not aware of an existing
model for estimating per connection load in a general case.

C. Identifying the AS-path for each Overlay Connection

Identifying the AS-level path for a given overlay connection
is the most important and most challenging step in mapping
(or assigning) the load of each connection onto the AS-level
underlay. The two approaches to tackle this problem are:1)
Measuring AS-level Paths, and2) Inferring AS-level Paths.

1) Measuring AS-level Paths:In this method, using a large
number of geographically distributed vantage points across the
Internet, one can conduct end-to-end measurements to estimate
the AS-level path between all possible pairs of end-points.
This approach has two significant limitations: First, the router-
level paths between end points are usually measured using
traceroute which is known to have a variety of problems,
particularly, in the presence of routers implementing load
balancing [10]. Even if an accurate router-level path can be
captured, to our knowledge, there is no reliable approach
to accurately translate this into an AS-level route due to IP
address aliasing (i.e., using multiple addresses on the same
router ) [11]. Second, to capture a complete set of AS-paths,
we need at least one vantage point at each edge AS where
peers are likely to exist. However, the number of vantage
points in unique ASes is often significantly smaller than the
total number of edge ASes. This in turn limits the coverage
of discovered end-to-end paths by this approach.

2) Inferring AS-level Path:In this approach, one can emu-
late BGP routing over a snapshot representing the AS-level
underlay topology to determine the AS-paths between any
pair of ASes. To infer the AS-level paths for a set of end-
to-end connections through simulation, one needs at least
the following two pieces of information:(i) an accurate and
complete snapshot of the Internet AS-level topology, and(ii)
realistic relationships between connected ASes in terms ofthe
associated BGP policies that each AS uses for prioritizing
incoming updates and filtering outgoing updates. However, as
discussed below, obtaining this information is a challenging
task in its own right.

D. Capturing AS-level Underlay Topology

There are two popular approaches to capture the Internet
AS-level topology, namelytraceroute-based topology discov-
ery andBGP-based topology discovery.

1) Traceroute-based Topology Discovery:As discussed ear-
lier, previous studies used traceroute to discover router-level
paths between any pair of end points. Using a large number
of geographically scattered vantage points, one can discover
a large number of such end-to-end paths [11]. However, the
captured routes may only reveal a portion of the AS-level
topology. Furthermore, known limitations of traceroute [10]
can result in significant errors to the captured paths (e.g.,
incorrect edges in the topology). Finally, accurately mapping
a router-level path to AS-level path is a non-trivial task and
prone to error as mentioned earlier.

2) BGP-based Topology Discovery:Each received BGP
update includes the AS-paths that the packets will take to
get to the origin AS of that BGP updates. Therefore, each
BGP router keeps the AS-paths to all reachable ASes over
the Internet. This can be used to infer a partial but reliable
view of the Internet AS-level topology from the viewpoint
of the receiving router. Public BGP archiving and monitoring
centers (e.g., RouteViews [7]) often establish BGP peerings
with a number of volunteer ISPs across the Internet to get
access to BGP tables from multiple viewpoints and effectively
have a more complete picture of the AS topology. They usually
provide current and archived BGP tables that include AS-paths
from each participating AS to all other reachable ASes. One
can extract all the AS links from these AS-paths and form an
inferred AS topology. While the produced AS-level topology
is known to miss a significant portion of AS links [12], [13]
(esp. peering links between lower tiered ASes), this approach
is very popular by networking researchers and engineers for
generating estimated connectivity structures of the real-world
AS-level topology.

E. AS Relationships & Policies

Individual ASes are often unwilling to reveal their re-
lationship with their neighboring ASes and the associated
policies due to security and business concerns. Furthermore,
the number and nature of these relationships and associated
policies may change with time. Internet registries (e.g., RIPE
and ARIN) provide such information but they are likely to
be incomplete, inaccurate or obsolete. Given the large num-
ber of ASes (i.e., 30,000+), soliciting this information from
individual ASes (even if they are cooperative) is prohibitively
expensive.

In the absence of explicit information on AS relationships,
prior studies have relied on heuristic methods to categorize
these relationships into the following three types:(i) Customer-
Provider,(ii) Peer-Peer, and(iii) Sibling-Sibling. Gao [5] uses
the relative degree of neighboring ASes to infer the type of
each relationship. In [14] the authors extend Gao’s method
and use new heuristics to increase the inference accuracy.
CAIDA uses the method proposed in [14] and provides AS-
level topologies that are annotated by the AS-relationshiptype.

These techniques often assign “tier” information to indi-
vidual ASes as well. The inferred AS relationships by these
algorithm may result in error when the underlying heuristics
are not true or the relationship does not exactly fall in one



of these three categories. Despite the potential error, these
heuristic techniques are considered as best known practices
for estimating AS relationships.

BGP routing is mostly based on the policies defined by each
AS. The usefulness of any simulations involving policies will
depend strongly on the accuracy of the policies implemented.
However, the most common policy in effect is commonly
referred to asvalley-free routingaccording to which no cus-
tomer will provide transit service between two of its providers.
In order to implement this, ISPs should filter out any routes
that they have received from their providers in the outgoing
announcements to other providers. t

F. Quantifying the Impact on the Underlay

So far we have discussed the challenges in accurately
estimating the impact of an overlay on the AS-level underlay
in the form of AS-level load matrix. We note that the load
matrix is a large (N*N) matrix where N is the number of
affected ASes in the Internet. While the load matrix is likely
to be sparse, (i.e., has many elements that are zero or very
small), it provides a rather detailed representation of load on
the underlay which is difficult to comprehend. Therefore, it
is essential that we measure the impact with a small number
of aggregate properties that represent overall characteristics of
impact and provide useful insight. This raises two basic ques-
tions: (i) how does one identify useful aggregate properties of
load?, and(ii) how does one ensure that the proposed metrics
are not too coarse; that is, unable to reveal informative fine-
grained features due to aggregation/averaging?

III. O UR METHODOLOGY

This section describes our methodology for addressing some
of the challenges that we discussed in Section II. Our method-
ology composes a collection of best practices in addressing
each one of the stated challenges. While our choices in
addressing each problem are specific, our methodology is
generic in the sense that if new and improved techniques for
dealing with any the challenges are developed, they can be
plugged into our methodology to increase its accuracy.
An Overview: At a high level, our approach can be summa-
rized as follows. We capture the overlay topology of widely
deployed P2P applications using a fast crawler. To assess
the load on individual connections, we make the simplifying
assumption that all connections of the overlay experience
roughly the same average load. To identify the AS-level path
for individual connections of the overlay, we leverage the best
practices for capturing AS-level topology, and identifying the
AS relationships and tier information. Finally, using detailed
simulation of BGP routing over the annotated AS-level topol-
ogy, we infer AS-level paths between all edge ASes in order
to assess load on the AS-level overlay. In the rest of this
section, we elaborate on each one of the above steps in our
methodology.

A. Capturing Overlay Topology

In our study, we use multiple snapshots of the top-level over-
lay of Gnutella. Gnutella is a widely-deployed P2P file sharing

application. Gnutella has a two tier overlay topology with
a subset of peers, called ultrapeers, forming an unstructured
top-level overlay, and the remaining peers, called leaf peers,
connecting to the overlay through a few ultrapeers. We only
focus on the top-level overlay among ultrapeers as examples
of a large-scale P2P overlay. We use a high performance P2P
crawler called Cruiser (see [15]) to capture snapshots of the
Gnutella overlay in less than 10 minutes. To our knowledge,
Cruiser is the fastest P2P crawler available and thus captures
the most accurate and complete snapshots of the Gnutella
overlay.

The Gnutella overlay is primarily used for exchanging
control messages (e.g., query and responses). Therefore, the
load on individual connection of the overlay is likely to be
less than the load in an overlay used for content delivery (e.g.,
BitTorrent or CoolStreaming). However, we are not aware of
any technique toreliably capture overlay topology in content
delivery P2P systems. Clearly, our methodology can be applied
to any other overlay topology.

B. Estimating the Load of Individual Overlay Connections

Without loss of generality, we assume in our analysis that all
connections of the overlay experience the same average load
in both directions. This simplifying assumption allows us to
focus on the mapping of overlay topology on the underlay
AS-level topology. If a reliable model for load of individual
connections is available, it can be easily plugged into our
methodology by assigning two weights (one in each direction)
to each connection of the overlay. In this paper, we simply
assume that the weight is one for all connections in both
directions.

C. Mapping Overlay Connections to the Underlay

Identifying the AS-path for each overlay connection is the
most challenging piece in our methodology. Toward this end,
we take the following steps:
1) Building AS-Grouped Overlay: We group all peers within
each AS and identify those ASes as edge ASes for a given
overlay. This provides an “AS-grouped” view of an overlay
where each node represents an edge AS, and each edge
represents overlay connection(s) between two ASes. We also
associate a weight to each AS to indicate the number of P2P
connections that are mapped to an edge in the AS-grouped
overlay. When peers at both ends of a P2P connection are
located in the same AS, we simply drop that connection since
it does not impose any inter-AS load on the underlay.

We use BGP routing table snapshots taken on the same
date as the overlay snapshots and provided by the RouteViews
project [7], to map the IP address of a given peer to its
corresponding AS. In the process, we identify the AS that
has the longest matching prefix with the peer’s IP address by
leveraging CAIDA’s Coral Reef package.
2) Determining AS-level Underlay Topology:We use snap-
shots of the AS-level Internet topology provided by CAIDA
[16]. These snapshots of the AS-level topology are constructed
using BGP routing tables from the RouteViews project for the



corresponding dates. Furthermore, each inter-AS link in the
topology is annotated with the relationship between connected
ASes. These relationships are estimated by an algorithm
applying the “valley-free routing” constraint on the topology.
Briefly, the algorithm works by(i) assuming that the AS with
the highest degree along each path has the highest position
in the hierarchy (top of the hill) , and(ii) assigning chains
of costumer-provider relationships to edges that are hanging
at each side of the top AS all the way to the ends of the
path. Furthermore, other heuristics (e.g., degree difference) and
information from routing registries (e.g., RIPE, ARIN) were
used to infer peer-peer and sibling-sibling relationships[14].

Second, we leverage the “LogRelInfer” tool developed at
the University of Massachusetts - Amherst (implementing the
algorithm proposed by Gao in [5]) on CAIDA’s annotated
snapshots of AS-level topology to explore any inconsistencies
between this algorithm and CAIDA’s algorithm. Our compar-
ison revealed that more than 95% of derived relationship are
consistent. Furthermore, CAIDA’s derived topology contains a
larger number of ASes and relationships. Therefore, we simply
use these snapshots after the mentioned validation. We also
used another tool “TierClassify” (implementing the algorithm
presented in [6]) to classify ASes into tiers. This tool mainly
relies on the fact that all tier-1 ISPs should be interconnected
with one another and therefore tries to find a clique among the
ASes with highest degrees. As we used this tool with the AS
relationships obtained from CAIDA, we faced a large number
(∼ 30) ASes classified as tier-1.While the commonly accepted
tier-1 networks are about 10-15, we slightly modified the tool’s
parameters to reduce the number of tier-1 ASes to 15.

D. Inferring AS-level Paths of Each Overlay Connection

We use detailed simulations of the BGP protocol over our
annotated snapshots of the AS-level underlay topology to
derive the AS-level path for each connection of the overlay.
Toward this end, we use theC-BGP simulator1. C-BGP is
a multi-purpose BGP simulator [8] that can compute the
outcome of the BGP decision process on a desired set of
interconnected routers with arbitrary BGP policies.C-BGPcan
also take an annotated AS-level topology as input and convert
it into a router topology where each AS is represented by a
router. The annotated relationship for each link is then trans-
lated into a predefined set of BGP policies that are applied to
each side of the respective BGP peering. The basic idea behind
the policies is to implementvalley-freerouting. Table I shows
the common routing policies that are used byC-BGP. This
table shows the following important points(i) communities
are used to mark incoming and outgoing routes,(ii) local-
preferencesgive first, second and third priorities to routes
received from customers, peers and providers, respectively,
(iii) route filtering is used to prevent redistributing provider
and peer routes to other providers and peers in order to ensure
valley-free paths. In summary, in the absence of reliable in-
formation about deployed (potentially heterogeneous) routing

1developed at UCL, Belgium; http://cbgp.info.ucl.ac.be/

TABLE I
BGP POLICIES USED TO IMPLEMENTAS RELATIONSHIPS INC-BGP

->customers:
community remove COMM_PROV
community remove COMM_PEER

<-customers:
local-pref 100

->peers:
deny if (community COMM_PROV) || (community COMM_PEER),
community remove COMM_PROV,
community remove COMM_PEER

<-peers:
community append COMM_PEER,
local-pref 80

->providers:
deny if (community COMM_PROV) || (community COMM_PEER),
community remove COMM_PROV,
community remove COMM_PEER

<-providers:
community append COMM_PROV,
local-pref 60

->siblings: (no filter, no community change)
<-siblings: (no filter, no community change)

policies by individual ASes, we adopt a commonly accepted
and intuitive set of policies in our simulations.

We note that representing each AS as a single router in our
simulation results in producing a single AS-level path between
each given pair of edge ASes. This implies that potential
multiple AS-level paths that may exist between two ASes in
practice (as presented in [17]) are not incorporated in our
simulations. While this assumption somewhat simplifies the
problem, we are not aware of any existing technique to capture
these subtle behavior of BGP routing. While the basic idea of
using simulation is rather straight forward, we have faced a
few problems that are worth mentioning.
Relationship Cycles in the AS-level Topology:In our initial
simulations over annotated underlay AS-level topology from
CAIDA, the BGP protocol did not converge. Further examina-
tions revealed that the annotated topologies contained several
relationship cycles. For instance, a simple 3-hop cycle is
formed whenISP1 is a customer ofISP2, ISP2 is a customer
of ISP3, andISP3 is a customer ofISP1. In addition to being
intuitively incorrect, these cycles led to infinite oscillations of
the BGP protocol. To fix this problem, we identified all such
loops in each topology and then broke the loop by changing
the relationship on the edge that was most counter-intuitive.
In particular, we changed the relationship on the link where
customer degree was larger than the provider degree. In cases
where more than one such link was identified, we selected the
link with the largest difference in the degree of the customer
and provider ASes.
Policies for Sibling Relationship:Unknown policies for Sib-
ling relationship introduce another set of unknown variables
to our BGP simulations. Sibling ASes are simply defined as
those owned by the same company, however, the deployed
policies between sibling ASes may significantly vary across
different companies based on the size of ASes, their locations
and purposes.

Considering the shared ownership status between sibling
ASes, we initially used the policy of sharing all routes and



TABLE II
SNAPSHOTS OFGNUTELLA OVERLAY TOPOLOGY

Snapshot Date #Peers #Connections
G-04 2004-11-20 177k 1.46M
G-05 2005-08-30 681k 5.83M
G-06 2006-08-25 1.0M 8.64M
G-07 2007-03-15 1.2M 9.80M

their preferences between sibling ASes as if they were one
AS. However, this strategy also resulted in formation of
cycles effectively preventing BGP from converging. Further
investigations revealed that sharing all routes and preferences
between sibling ASes may not always be appropriate2 Since
assigning proper routing policies to each pair of sibling ASes
is not feasible, we modified all sibling relationships to Peer-
to-Peer relationships over which no transit service is provided.

IV. I NITIAL CHARACTERIZATION OF THE EFFECT OF

OVERLAYS ON THE UNDERLAY

This section presents the effects of a Gnutella top-level
overlay on the AS-level underlay from several angles. First,
we present our datasets and then we examine the mapping
of peers to their corresponding edge ASes. Finally, we map
overlay connections to the AS-level underlay and assess the
load on core ASes.

A. Datasets

1) Snapshots of Gnutella Top-level Overlay:We use four
snapshots of the top-level overlay (i.e., connectivity among
ultrapeers) in the Gnutella file sharing application. These
snapshots are captured using a high-speed P2P crawler, called
Cruiser These snapshots are collected in 4 consecutive years
starting at 2004. Table II summarizes the main information
associated with the collected overlay snapshots includingdate
of capturing, number of peers, and number of connections. We
use the labels G-xx to refer to these snapshots throughout this
section.

Table II reveals that the number of coexisting peers in the
top level overlay of Gnutella has become more than six times
larger over the 4 year period. The number of edges has also
proportionally grown.

2For example, consider a small overseas branch of a large ISP as its sibling
AS. In this case, the BGP policies should be strictly asymmetric to prevent
any transit traffic to go through the small AS. Alternatively,a national level
ISP that uses two sibling ASes on each coast of the U.S., should adopt a
symmetric set of policies between them with minimal filtering to maximize
the benefit of the peering relationship.

TABLE III
SNAPSHOTS OFBGP ROUTING TABLE

Date # Prefixes # Originating ASes # Total ASes
2004-11-20 165,406 18,499 18,733
2005-08-30 185,256 20,424 20,628
2006-08-25 210,098 23,038 23,262
2007-03-15 229,237 24,669 24,923

TABLE IV
MAPPING PEERS TO THE EDGEASES

Snapshot #Peers #Edge ASes # Edge ASes (w 100+ peers)
G-04 177k 1,872 154
G-05 681k 2,670 290
G-06 1.0M 3,462 414
G-07 1.2M 3,684 460

2) Snapshots of BGP Routing Table:We used daily snap-
shots of BGP routing tables from the RouteViews archive for
the same days that our overlay snapshots were collected as
shown in Table III. This ensures that each overlay is mapped
to a corresponding AS-level underlay. The table summarizes
important statistics about each BGP snapshot including the
number of reported prefixes in each snapshot, the number
of unique ASes that announced at least one network (i.e.,
originating ASes), and the total number of unique ASes
observed in the snapshot. The significant growth in the number
of prefixes and ASes (both originating and total) during the
four year period demonstrates the growth of the Internet. The
difference between originating and total ASes (around 200-
300 ASes) can be associated with transit ASes that do not
announce any prefixes.

B. Mapping Peers to the Underlay

Identify Edge ASes:We start by mapping peers in our overlay
snapshots to the AS-level underlay to identify edge ASes.
Table IV summarizes the number of edge ASes (i.e., ASes
where peers are located) and the number of major edge ASes
that host more than 100 peers. Given the number of active
ASes in the Internet for each year from Table III, Table IV
indicates that(i) the edge ASes cover 10%-15% of all ASes in
the Internet,(ii) only 1% to 3% of the edge ASes have more
than 100 peers. These results demonstrate that our overlay
topology has a rather wide footprint across the Internet.
Distribution of Peers per Edge AS: Figure 2 depicts the
distribution of peers among edge ASes for all four overlay
snapshots. In Figure 2(a) the distribution of AS peer population
is shown in a semi-log scale CCDF plot for all four overlay
snapshots. This Figure shows two interesting points:(i) the
distribution of peers across ASes is very skewed. Depending
on the overlay snapshot, 20-30% of edge ASes host only a
single peer, and 60-70% of ASes host less than 10 peers, while
less than 10% of ASes host between 100 to 10,000 peers.(ii)
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Fig. 3. Identity & evolution of top-10 edge ASes hosting highest number of
peers

while the collected snapshots are far apart in time, they exhibit
a very similar trend. Figure 2(b) depicts the distribution of all
peers among the ASes sorted by peer population in semi-log
scale CCDF format. As shown in this figure, the top 10 ASes
represent between 30-40% of all peers and the top 100 ASes
represent about 80% of all peers.
Identity and Evolution of Edge ASes: We now turn our
attention to the identity of major edge ASes and examine
their evolution over time. Figure 3 shows the top-10 edge
ASes (ordered from top to bottom on the y axis) based on the
number of peers they host, and the evolution of top-10 edge
ASes across the four overlay snapshots. While the population
of peers and thus the ranking of top-10 ASes change over
time, 60% of the edge ASes consistently remain in the top-
10 during the 4 year period. We note that the change in the
population of peers in an AS could be due to a variety of
reasons. For example, in some cases an ISP could change its
allocated IP addresses, or its policies for using AS numbers.
e.g., AS numbers 22909 and 33287 both belong to Comcast.
Interestingly AT&T has two top-10 ASes in 2004 but none in
2007.
Distribution of Peers & Edge ASes across Tiers:Another
interesting issue is to examine the position of peers and
edge ASes in the AS-level hierarchy (i.e., AS tiers). Table V
shows how the peers are distributed in ASes at different
tiers. This table shows that a majority (65% - 82%) of peers
are located in tier-2 ASes. This is reasonable because most
of the large residential providers are tier-2 ASes. A small
portion (2% - 13%) of peers are in tier-1 ASes. These are
large telecom companies with both residential services and
backbone infrastructure. Another interesting trend in Table V

TABLE V
DISTRIBUTION OF PEERS ACROSS EDGEASES WITH DIFFERENT TIERS.(%

OF PEERS IN EACH SNAPSHOT)

Snapshot Tier 1 Tier 2 Tier 3 Tier 4
G-04 6.5 70.6 22.5 0.4
G-05 12.7 64.9 21.9 0.4
G-06 2.6 80.4 15.8 1.1
G-07 1.9 81.1 16.3 0.7

TABLE VI
DISTRIBUTION OF EDGEASES ACROSS DIFFERENT TIERS(% OF ASES)

Snapshot #Ases Tier 1 Tier 2 Tier 3 Tier 4
G-04 1,872 0.8 50.2 43.8 4.9
G-05 2,670 0.6 47.7 44.9 6.3
G-06 3,462 0.4 42.4 49.0 7.8
G-07 3,684 0.4 42.5 45.9 10.5

is that peers seem to be moving from tier-3 and tier-1 ASes
to tier-2 ASes during this 4 years. The large fraction of peers
in tier 1 in the 2005 overlay snapshot is primarily caused by
AS7132 (SBC). In the 2005 snapshot, SBC hosts the highest
number of peers and is classified as a tier-1 AS whereas in
other years SBC is classified as tier 2. This suggest that the
large fraction of peers in 2005 is a result of a mis-classification
of SBC in 2005.

Table VI shows the distribution of edge ASes across dif-
ferent tiers for all four snapshots. Clearly, a majority of edge
ASes are evenly divided between tier-2 and tier-3 while a small
but growing fraction of these ASes are tier-4. Comparing this
table with Table V reveals that there is a large number of tier-
4 and tier-3 ASes with small peer populations whereas the
average peer population in a tier-2 AS is much larger.

C. Mapping Edges to the Underlay

We now characterize the load imposed by overlay connec-
tions on the AS-level underlay by focusing on “transit ASes”.
These are the ASes along AS-paths for individual overlay con-
nections excluding the first and last ASes (edge ASes) where
peers at the end of each connections reside. Table VII shows
the number of connections, the number of corresponding AS-
paths and the number of AS-paths with 100+ connections
for all four overlay snapshots. Both the number of overlay
connections and unique AS-paths are growing over time. But
the number of AS-paths is roughly 2 orders of magnitude
smaller than then number connections.

To examine the mapping of overlay connections to AS-paths
more closely, Figure 4(a) depicts the CCDF distribution of
the number of overlay connections per AS-path between any
pair of connected edge ASes in log-log scale for all overlay
snapshots. This distribution is very skewed showing that about
10% of paths have less than 10 connection while 1% of paths
observe more than 200 connections.
Observed Load by Individual Transit ASes: Since we
assumed that all connections have the same load, we simply
quantify the load on each transit AS by the number of

TABLE VII
MAPPING OVERLAY CONNECTIONS TO THEAS-LEVEL UNDERLAY

Snapshot #P2P Conn. #AS Paths %AS Path (w 100+ conn.)
G-04 1.46M 192k 2.0
G-05 5.83M 384k 2.9
G-06 8.64M 605k 2.8
G-07 9.80M 684k 2.7
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Fig. 4. (a) Dist. of number of overlay connections per each AS-paths, (b) Number of overlay connections passing through each transit AS, (c) Number of
AS-paths crossing through each transit AS.
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Fig. 5. (a) Scatterplot of number of crossing AS-paths vs. number of overlay connections passing through each AS, (b) Dist.of AS-path length between
connected edge ASes, (c) Dist. of AS-path length for all overlay connection.

overlay connections crossing that AS,i.e., number of overlay
connections for which this AS appears on the corresponding
AS-level path. Figure 4(b) shows the number of overlay
connections that cross each transit AS in log-log scale where
ASes are ranked from high to low based on their overall
observed load. This figure demonstrates that the load on transit
ASes is very skewed. A small number of ASes carry a large
volume of traffic while the load on most transit ASes is rather
small. Interestingly, the shape of this histogram for all four
snapshots is very similar except for the outward shift in more
recent snapshots due to their larger population and number
of connections. This similarity in the load histogram couldbe
due to two observations:(i) stability of most top-10 edge ASes
over the four year period, and(ii) the constraint of valley free
routing over the hierarchical structure of AS-level underlay.

To further investigate the underlying causes for the observed
skewed histogram of load among transit ASes, we examine
the number of unique AS-paths (associated with overlay
connections) that pass through each transit AS in Figure 4(c).
This figure shows that the histogram of AS-paths crossing
per transit ASes has a very similar shape. This suggests that
the number of crossing connections for individual ASes is
primarily determined by BGP routing. Figure 5(a) validates
this observation by showing the number of crossing AS-paths
and crossing connections through each transit AS (as x and
y values) in a scatter-plot. This figure essentially connects
the previous two distributions, and confirms that the observed
load by individual ASes primarily depends on their appearance
across associated AS-paths. Interestingly, once the number of

cross AS-paths exceeds a certain threshold (a few hundred),
their observed load increases at a much faster pace .
Distribution of AS-Path Length: One way to quantify the
impact of an overlay on the AS-level underlay is to character-
ize the length of AS-paths for individual overlay connections.
Figure 5(b) shows the histogram of AS-path length across all
AS-paths used by the overlay for each of the 4 snapshots and
can be used as a reference. This figure shows that around 40%
of the used paths are three AS hops long while 80% of the
paths in each overlay are at most 4 AS hops.

Figure 5(c) depicts the histogram of AS-path length across
all overlay connections for each overlay snapshots. In essence,
this can be viewed as a “weighted” version of Figure 5(b)
where each path is weighted by the number of corresponding
connections. The figure shows similar patterns across all
overlay snapshots despite the change in the number of peers
and their connections. The two histograms are very similar but
the path length for all connections of the overlay is slightly
shorter indicating that a higher fraction of connections are
associated with shorter paths.
Identity and Evolution of Transit ASes: To investigate the
effect of transit ASes more closely, we examine the identity
of the top-10 transit ASes that observe the highest number of
crossing overlay connections, and their evolution over time in
Figure 6. The top transit ASes are ordered vertically from top
to bottom for each overlay snapshot. This figure shows that
only 4 transit ASes (including top 3 ASes) remain stable across
all four snapshots. However, the changes in the other transit
ASes is more chaotic. This is due to the fact that ranking of
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Fig. 6. Identity and evolution of top-10 transit ASes observing the largest
volume of traffic

transit ASes is affected by a combination of factors including
changes in the topology of AS-level underlay, changes in
routing policies, and the location of peers.

We have randomly rewired the connections of each overlay
to generate a comparable random graph and then calculated
the associated AS-paths over the same AS level topology.
The histogram of AS-path length in the randomized overlay
(not shown) is nearly identical to Figure 5(c) for all overlay
snapshots.
Diffusion of Traffic in the AS Hierarchy: The most in-
teresting way to quantify the impact of an overlay topology
on the AS-level underlay is to determine the fraction of load
that is propagated upward in the AS-level hierarchy towards
top-tiered ASes. Table VIII shows the percentage of paths
and percentage of overlay connections whose top AS is tier-
1, tier-2 and tier-3 in each overlay snapshot. The columns
marked “unweighted” show the percentage of the used AS-
paths reaching each tier while the columns marked “weighted”
represent the percentage of paths weighted by the number
of overlay connections using that path, effectively showing
the percentage of overlay connections reaching each tier. This
table shows that more than half of the paths reach tier-1 ASes
and roughly 40% of the paths peak in a tier-2 AS.

The percentage of connections that reach a tier-1 AS is
higher than the number of paths reaching tier-1, indicatingthat
a larger fraction of connections are mapped to these paths. The
percentage of connections that top in a tier-2 AS is around 16%
to 37% which is smaller than the percentage of paths reaching
tier-2. Interestingly, the percentage of connections thattop
in tier-1 ASes decreases over time while the percentage of
connections that top in a tier-2 ASes is increasing. These trends
suggest the increasing connectivity between ASes in lower
tiers which reduces the fraction of connections that have to
climb the hierarchy up to tier-1 ASes.

V. RELATED WORK

During the past few years, the ever-increasing portion of
Internet traffic resulting from P2P applications has becomea
concern for commercial ISPs. Due to the symmetric nature
and steady pattern of P2P traffic, these ISPs find it costly
to accommodate it and try to limit it by simply blocking
certain P2P applications or regulating the traffic rate, which in

TABLE VIII
PERCENTAGE OF PATHS/CONNECTIONS REACHING EACH TIER OFAS

HIERARCHY.

Tier-1 Tier-2 Tier-3
Snapshot Path Conn Path Conn Path Conn

G-04 51 84 46 16 2.4 0.0

G-05 59 73 38 27 3.0 0.0

G-06 52 64 38 36 10 0.0

G-07 55 63 41 37 3.6 0.1

turn can cause other problems.3. On a more technical level, a
number of studies have aimed at quantifying the impact of P2P
applications on the ISPs. Karagianniset al. [18] compare the
load on the ISPs for the cases of traditional client-server,P2P,
local caching and locality-aware peer-assisted content delivery
and concludes that the last type provides the most benefits in
terms of both ISP load and the observed performance by the
users. They suggest that if the amount of locally available
content is large, the applications can make use of the locally
available content to reduce the load on the external links of
the ISP. Another study by Gummadiet al. [19] presents an
analysis of the traffic associated with the KazaA P2P file
sharing application at the University of Washington campus
network. They also show that there is a substantial percentage
of requests that can be resolved locally, effectively reducing
the traffic on the external link. Both studies are based on
packet traces captured locally at the ISP gateways. Although
they were successful in inspiring works on localizing the P2P
traffic, their results are only valid for specific types of networks
and can hardly be extended to other networks of other types
and sizes. Furthermore, the P2P traffic pattern between ISPs
is not part of these studies.

In response to the ISPs concerns and actions against P2P
traffic, several research papers and Internet drafts have been
published in the recent years. In the first set of papers, the
common approach is designing ISP-friendly P2P applications.
Such P2P applications use a variety of techniques to enable
each peer to discover other local peers and effectively forman
overlay that is “locality-aware” without any explicit assistance
from the network layer. A few examples for suchindependent
locality aware overlaysare [20]–[23] where the first two use
landmarks, the third uses DNS domain names and the last one
uses LDAP protocol to detect locality among peers.

Subsequent papers in this area propose methods that rely on
a cooperation interface between the network layer (ISP) and
the application layer (P2P) through which the ISP provides
necessary information to the application with the goal of
making the overlay load less “costly” for the ISP and also more
desirable (based on the applications goal) for the application.
Oracle [3], is a server run by the ISP with the underlay
information to which the local peers send their list of candidate
peers. It is responsible for sorting them according to the ISP’s
preference and returning them to the requesting peer. In P4P
[2], the network information is provided to the application’s

3In the summer of 2008, the FCC issued a ruling against a major ISP that
deployed such practices and asked the ISP to stop them.



local tracker (e.g., BitTorrent) which then implements those
information in assisting peers with neighbor selection.

To the best of our knowledge no previous work has been
done on theglobal impact of P2P (i.e., overlays) on the AS-
level underlay. In particular the following questions havenot
been answered by previous studies: (i) How does the traffic
generated by a given P2P application in the overlay impact
the AS-level underlay? (ii) What is the pattern of P2P traffic
flow among ISPs at different levels of the Internet’s hierarchy
(tiers)? (iii) How similar (or dissimilar) are the patternsof P2P
traffic in different geographical regions? (iv) Which ASes are
affected the most by the traffic imposed by an overlay?

VI. CONCLUSION AND FUTURE WORK

In this paper, we explored the problem of quantifying the
load that a particular overlay contributes to the AS level
underlay. We identified the challenging components of this
problem and described existing techniques to address each
component. We presented a methodology for mapping the
load of an application-level overlay on the AS-level underlay
that incorporates a collection of best existing practices.We
applied our methodology to characterize the load of real world
P2P overlays on the AS-level underlay. Our study deepens the
understanding of interactions between application level overlay
and the underlay.

As part of our future work, we plan to investigate how
changing the geographical location of peers and their con-
nectivity change the imposed load on the AS-level underlay.
Furthermore, we plan to derive and incorporate traffic model
for different P2P application into our methodology. Finally,
we leverage pricing models that are used by ISPs to determine
how structure and workload of an overlay determine revenue
of ISPs in the AS hierarchy of the underlay.
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